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Abstract. The cross-couplings among several massless spin-two fields (described in the free limit by a sum of
Pauli-Fierz actions) in the presence of a massive Rarita—Schwinger field are investigated in the framework
of the deformation theory based on local BRST cohomology. Under the hypotheses of locality, smoothness
of the interactions in the coupling constant, Poincaré invariance, Lorentz covariance, and the preservation of
the number of derivatives on each field, we prove that there are no consistent cross-interactions among differ-
ent gravitons with a positively defined metric in internal space in the presence of a massive Rarita—Schwinger
field. The basic features of the couplings between a single Pauli—Fierz field and a massive Rarita—Schwinger

field are also emphasized.
PACS. 11.10.Ef
1 Introduction

Over the last twenty years there has been a sustained ef-
fort to construct theories involving a multiplet of spin-two
fields [1-4]. At the same time, various couplings of a single
massless spin-two field to other fields (including itself) have
been studied in [5—15]. In this context, the impossibility of
cross-interactions among several Einstein gravitons under
certain assumptions was proved recently in [16] by means of
a cohomological approach based on the Lagrangian BRST
symmetry [17-21]. Moreover, in [16], the impossibility of
cross-interactions among different Einstein gravitons in the
presence of a scalar field has also been shown.

The main aim of this paper is to investigate the cross-
couplings among several massless spin-two fields (de-
scribed in the free limit by a sum of Pauli-Fierz actions)
in the presence of a massive Rarita—Schwinger field. More
precisely, under the hypotheses of locality, smoothness of
the interactions in the coupling constant, Poincaré invari-
ance, (background) Lorentz invariance, and the preserva-
tion of the number of derivatives on each field, we prove
that there are no consistent cross-interactions among dif-
ferent gravitons with a positively defined metric in internal
space in the presence of a massive Rarita—Schwinger field.
This result is obtained by using the deformation tech-
nique [22] combined with the local BRST cohomology [23].
It is a well-known fact that the spin-two field in metric for-
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mulation (Einstein—Hilbert theory) cannot be coupled to
a spin-3/2 field. However, as will be shown below, if we
decompose the metric as g, = 0. + Ay, where oy, is
the flat metric and ) is the coupling constant, we can in-
deed couple the massive spin-3/2 field to h, in the space
of formal series with the maximum derivative order equal
to one in hy,. Thus, our approach envisages two different
aspects. One is related to the couplings between the spin-
two fields and one massive Rarita—Schwinger field, while
the other focuses on proving the impossibility of cross-
interactions among different gravitons via a single massive
Rarita—Schwinger field. In order to make the analysis as
clear as possible, we initially consider the case of the cou-
plings between a single Pauli-Fierz field [24] and a massive
Rarita—Schwinger field [25]. In this setting, we compute the
interaction terms to order two in the coupling constant.
Next, we prove the isomorphism between the local BRST
cohomologies corresponding to the Pauli-Fierz theory and
to the linearized version of the vierbein formulation of the
spin-two field, respectively. Since the deformation proced-
ure is controlled by the local BRST cohomology of the free
theory (in ghost numbers zero and one), the previous iso-
morphism allows us to translate the results emerging from
the Pauli-Fierz formulation into the vierbein version and
conversely. In this manner, we obtain that the first two
orders of the interacting Lagrangian resulting from our set-
ting originate in the development of the full interacting
Lagrangian

E(int) — ; (_iz/jﬂeauebuecp,yabchwp + ml/;uea“’Yabeb”wy)
+A [V (XY, 2)+dy (X,Y, Z) e,/ "Dy (eyp*)
+eds (X,Y, Z) (7" +e e’ ,b"7*) Dy (e 40)] -
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Here, e * represent the vierbein fields, e is the inverse of
their determinant, e = (det (e,#)) ™", D,, signifies the full
covariant derivative, and v* stand for the flat Dirac ma-
trices. The fields v, denote the (curved) Rarita—Schwinger
spinors (¢, = e%,1),). The quantities denoted by V, d;, and
dy are arbitrary polynomials of X =,9%, Y = 1y,
and Z =iy,v5¢®. Here and in the sequel A is the coup-
ling constant (deformation parameter). We observe that
the first two terms in £0") describe the standard mini-
mal couplings between the spin-two and massive Rarita—
Schwinger fields. The last terms from £ namely those
proportional to V, dy, or dsz, produce non-minimal cou-
plings. To our knowledge, these non-minimal interaction
terms are not discussed in the literature. However, they are
consistent with the gauge symmetries of the Lagrangian
Lo+ £ where L, is the full spin-two Lagrangian in the
vierbein formulation. With this result at hand, we start
from a finite sum of Pauli-Fierz actions with a positively
defined metric in internal space and a massive Rarita—
Schwinger field, and prove that there are no consistent
cross-interactions between different gravitons in the pres-
ence of such a fermionic matter field.

This paper is organized in seven sections. In Sect. 2 we
construct the BRST symmetry of a free model with a sin-
gle Pauli-Fierz field and one massive Rarita—Schwinger
field. Section 3 briefly addresses the deformation procedure
based on BRST symmetry. In Sect. 4 we compute the first
two orders of the interactions between one graviton and
one massive Rarita—Schwinger spinor. Section 5 presents
the Lagrangian formulation of the interacting theory. Sec-
tion 6 is devoted to the proof of the fact that there are no
consistent cross-interactions among different gravitons in
the presence of a massive Rarita—Schwinger field. Section 7
exposes the main conclusions of the paper. The present
paper also contains two appendices, in which various no-
tations and conditions are listed and also some statements
from the body of the paper are proved.

2 Free model: Lagrangian formulation
and BRST symmetry

Our starting point is represented by a free model, whose
Lagrangian action is written like the sum between the ac-
tion of the linearized version of Einstein—Hilbert gravity
(the Pauli-Fierz action [24]) and that of a massive Rarita—
Schwinger field [25]

S5 ] = [ % (= @uhuy) @*0)
(@) (0 ) — (1) (D,17)
+ 3 (@uh) (0"h) = ) 5,770,0,
-%Z;¢u7“”wu)
= / a' (L7 4 L)

= S(IJDF [h;w] + S(I)DLS Wu] :

Everywhere in this paper we use the flat Minkowski metric
of ‘mostly minus’ signature, o, = (+ — ——). In the above,
h denotes the trace of the Pauli-Fierz field, h = o, h*",
and the fermionic fields 1, are considered to be real (Ma-
jorana) spinors. We work with a representation of the Clif-
ford algebra

(2)

in which all the v matrices are purely imaginary, so that we
have

Y Yo + VoV = 2U,uul )

p=0,3, (3)
where here and in the sequel the notation NT signifies the
transpose of the matrix N. In addition, 7y is Hermitian and
antisymmetric, while (v;) i—1,3 are anti-Hermitian and sym-
metric. The Dirac conjugation is defined as usual through

Vi = —V0VuY0 s

=) 0, (4)
and the Majorana conjugation via
Pe=(Cy)T, ()

with the corresponding charge conjugation given by

(6)

(The operation ' signifies the Hermitian conjugation.) Ac-
tion (1) possesses an irreducible and Abelian generating set
of gauge transformations

CZ—’)/().

0et),, =0, (7)

with €, being bosonic gauge parameters. The parentheses
signify symmetrization; they are never divided by the num-
ber of terms: e.g., 9(,€,) = Ou€, + Oy€,, and the minimum
number of terms is always used. The same is valid with
respect to the notation [p---v], which means antisym-
metrization with respect to the indices between brackets.

In order to construct the BRST symmetry for (1), we
introduce the fermionic ghosts 7, corresponding to the
gauge parameters €, and associate antifields with the ori-
ginal fields and ghosts, respectively denoted by {h*’“’, w;}
and {n**}. (The statistics of the antifields is opposite
to that of the correlated fields/ghosts.) The antifields of
the Rarita—Schwinger fields are bosonic, purely imaginary
spinors. Since the gauge generators of the free theory under
study are field independent and irreducible, it follows that
the BRST differential simply decomposes into

dehyw = O(u€ny

s=0+7, (8)
where 0 represents the Koszul-Tate differential, graded by
the antighost number agh (agh (§) = —1), and  stands for
the exterior derivative along the gauge orbits, whose de-
gree is named pure ghost number pgh (pgh () = 1). These
two degrees do not interfere (pgh (6) =0, agh () = 0). The
overall degree from the BRST complex is known as the
ghost number gh and is defined like the difference between
the pure ghost number and the antighost number, such
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that gh (0) = gh () = gh (s) = 1. If we make the notations

P = (huuku) ) ¢ZO = (h*’wﬂﬁ,j) ) (9)

then, according to the standard rules of the BRST formal-
ism, the degrees of the BRST generators are valued like

agh (#%°) = agh (1,) =0, agh(®} ) =1
agh (n™) =2, (10)
pgh (#°) =0, pgh(n,)=1,

pgh (%}, ) = pgh (n™*) =0. (11)

The actions of the differentials § and v on the generators
from the BRST complex are given by

Sh*H = 2HM, 5™+ = mapyy™ —i8,ay™M,  (12)

on*t = =20, (13)

5P =0=dn,, (14)

195, =0="n", (15)

'Yh/.w = 8(;1,7711)’ 7'¢u =0, YN = 0, (16)

where H*" is the linearized Einstein tensor
1
HY = KM — 20’“’K, (17)

with K* and K the linearized Ricci tensor and, respec-
tively, the linearized scalar curvature, both obtained from
the linearized Riemann tensor

1
Km,ag = — 9 (8,L8ah,,,g +8,,8gh,m
—0,00hup — 0,08hua) (18)
via its trace and double trace, respectively,
Kuo=0""Kap, K=0"0""Kuus. (19)

The BRST differential is known to have a canonical
action in a structure named antibracket and denoted by
the symbol (,) (s- = (-, 5)), which is obtained by decree-
ing the fields/ghosts conjugated to the corresponding anti-
fields. The generator of the BRST symmetry is a bosonic
functional of ghost number zero, which is the solution to
the classical master equation (S , 5) = 0. The full solution
to the classical master equation for the free model under
study reads as

5= 8K i+ [ a0y, (20

3 Deformation of the solution to the master
equation: a brief review

We begin with a “free” gauge theory, described by a La-
grangian action S{[#20], invariant under some gauge

: Sk
tran§f0rmat10ns 0P = Z90 €1, ie. 54500 Zo‘o()l = 0, and
consider the problem of constructing consistent interac-

tions among the fields #“0 such that the couplings preserve

both the field spectrum and the original number of gauge
symmetries. This matter is addressed by means of reformu-
lating the problem of constructing consistent interactions
as a deformation problem of the solution to the master
equation corresponding to the “free” theory [22]. Such a re-
formulation is possible due to the fact that the solution
to the master equation contains all the information on the
gauge structure of the theory. If an interacting gauge the-
ory can be consistently constructed, then the solution S to
the master equation (5’ , 5’) =0 associated with the “free”
theory can be deformed into a solution S

S—35S=S+AS1+A25,+...

:5+A/dea+)\2/dDmb+..., (21)
of the master equation for the deformed theory
(5,5)=0 (22)

such that both the ghost and antifield spectra of the ini-
tial theory are preserved. Equation (22) splits, according to
the various orders in the coupling constant (deformation
parameter) J, into a tower of equations:

(S,8) =0, (23)

2(51,5) =0, (24)

2 (52, 5) +(51,51) =0, (25)
(S3,5) +(51,52) =0, (26)

Equation (23) is fulfilled by the hypothesis. The next
equation requires that the first-order deformation of the so-
lution to the master equation, S1, is a cocycle of the “free”
BRST differential s- = (-, 5’). However, only cohomologi-
cally non-trivial solutions to (24) should be taken into ac-
count, as the BRST-exact solutions can be eliminated by
some (in general non-linear) field redefinitions. This means
that S; pertains to the ghost number zero cohomological
space of s, HY (s), which is generically non-empty because
it is isomorphic to the space of physical observables of the
“free” theory. It has been shown (by the triviality of the an-
tibracket map in the cohomology of the BRST differential)
that there are no obstructions in finding solutions to the
remaining equations, namely (25), (26), etc. However, the
resulting interactions may be non-local, and obstructions
might even appear if one insists on their locality. The an-
alysis of these obstructions can be carried out by means of
standard cohomological techniques.

4 Consistent interactions between the spin-two
field and the massive Rarita—Schwinger field

4.1 Standard material: H(vy) and H (4|d)

This section is devoted to the investigation of consistent
cross-couplings that can be introduced between a spin-two



268 C. Bizdadea et al.: No interactions for a collection of spin-two fields intermediated by a massive Rarita—Schwinger field

field and a massive Rarita—Schwinger field. This matter is
addressed in the context of the antifield-BRST deforma-
tion procedure briefly addressed in the above and relies on
computing the solutions to (24)—(26), etc., with the help of
the free BRST cohomology.

For obvious reasons, we consider only smooth, local,
(background) Lorentz invariant quantities and, moreover,
Poincaré invariant quantities (i.e. we do not allow explicit
dependence on the spacetime coordinates). The smooth-
ness of the deformations refers to the fact that the de-
formed solution to the master equation (21) is smooth in
the coupling constant A and reduces to the original solu-
tion (20) in the free limit A = 0. In addition, we require
conservation of the number of derivatives on each field (this
condition is frequently met in the literature [14, 16]). If we
make the notation S; = [ d*za with a a local function,
then (24), which as we have seen controls the first-order de-
formation, takes the local form

sa=090,m", gh(a)=0, e(a)=0, (27)
for some local m*, and it shows that the non-integrated
density of the first-order deformation pertains to the local
cohomology of the BRST differential in ghost number zero,
a € H° (s|d), where d denotes the exterior spacetime differ-
ential. The solution to (27) is unique up to s-exact pieces

plus divergences

a—a+sb+0,n", gh(b)=-1,e(0)=1,

gh(n*) =0, e(n")=0. (28)

At the same time, if the general solution of (27) is found to
be completely trivial, a = sb+ d,n#, then it can be made to
vanish a = 0.

In order to analyze (27), we develop a according to the
antighost number

I
a:Zai, agh(ai):i, gh(az):()? E(ai):()v
=0

(29)

and take this decomposition to stop at some finite value I
of the antighost number. The fact that I in (29) is finite
can be argued like in [16]. Inserting the above expansion
into (27) and projecting it on the various values of the anti-
ghost number with the help of the split (8), we obtain the
tower of equations

(n*

yar =0, m (30)
I-1)H
(5a[+7a1_1=8,u(m) ) (31)
i 1)P
5ai+7ai71:8u(ml) ; 1<i<I-1, (32)

P P
where <7T)L ) o are some local currents with agh <§T)L )
1=V,

= 4. Moreover, according to the general result from [16] in
the absence of the collection indices, (30) can be replaced’

1 This is because the presence of the matter fields does not
modify the general results on H () presented in [16].

in strictly positive antighost numbers by

vyar=0, I>0. (33)
Due to the second-order nilpotency of y (2 = 0), the solu-

tion to (33) is clearly unique up to y-exact contributions

ar —ar+vbr, agh(br)=1,

pgh(by)=1-1, e(br)=1. (34)
Meanwhile, if it turns out that a; reduces to y-exact terms
only, ar = by, then it can be made to vanish, a; = 0. The
non-triviality of the first-order deformation a is thus trans-
lated at its highest antighost number component into the
requirement that a; € H' (), where H’ (y) denotes the
cohomology of the exterior longitudinal derivative v in
pure ghost number equal to I. Thus, in order to solve (27)
(equivalent to (33) and (31)—(32)), we need to compute the
cohomology of v, H (), and, as it will be made clear below,
also the local cohomology of ¢ in pure ghost number zero,
H (6|d).

Using the results on the cohomology of the exterior lon-
gitudinal differential for a Pauli-Fierz field [16], as well as
the definitions (15) and (16), we can state that H () is
generated on the one hand by &7, , n;,, ¥, and K vap to-
gether with all of their spacetime derivatives and, on the
other hand, by the ghosts 1, and 9,n,). Thus, the most
general (and non-trivial), local solution to (33) can be writ-
ten, up to y-exact contributions, as

ar = ar (Y [Kuvas] s [Pa,] [1:]) ! (1, Opury)
(35)

where the notation f ([g]) means that f depends on ¢ and
its derivatives up to a finite order, while w’ denotes the
elements of a basis in the space of polynomials with pure
ghost number I in the corresponding ghosts and their an-
tisymmetrized first-order derivatives. The objects a; have
the pure ghost number equal to zero and are required to
fulfill the property agh(ay) =1 in order to ensure that
the ghost number of a; is equal to zero. Since they have
a bounded number of derivatives and a finite antighost
number, a are actually polynomials in the linearized Rie-
mann tensor, in the antifields, in all of their derivatives,
as well as in the derivatives of the Rarita—Schwinger fields.
The anticommuting behaviour of the vector-spinors in-
duces that oy are also polynomials in the undifferentiated
Rarita—Schwinger fields, so we conclude that these elem-
ents exhibit a polynomial character in all of their argu-
ments. Due to their y-closeness, ya; = 0, ay will be called
invariant polynomials. In zero antighost number the invari-
ant polynomials are polynomials in the linearized Riemann
tensor K3, in the Rarita-Schwinger spinors, as well as
in their derivatives.

Inserting (35) in (31), we obtain that a necessary (but
not sufficient) condition for the existence of (non-trivial)
solutions ay_; is that the invariant polynomials aj are
(non-trivial) objects from the local cohomology of the
Koszul-Tate differential H (§|d) in pure ghost number zero
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and in strictly positive antighost numbers I > 0

-t I-nt
dar=0, j , agh J =I-1,

(Ifl)u
pgh J =0.

We recall that H (6|d) is completely trivial in both strictly
positive antighost and pure ghost numbers (for instance,
see [23], Theorem 5.4 and [26]). Using the fact that the
Cauchy order of the free theory under study is equal to two
together with the general results from [23], according to
which the local cohomology of the Koszul-Tate differential
in pure ghost number zero is trivial in antighost numbers
strictly greater than its Cauchy order, we can state that

(36)

H;(§|ld)=0 forallJ>2, (37)
where Hj (6|d) represents the local cohomology of the
Koszul-Tate differential in zero pure ghost number and in
antighost number J. An interesting property of invariant
polynomials for the free model under study is that if an
invariant polynomial oy, with agh(ay) =J > 2, is triv-
ial in Hj (6]d), then it can be taken to be trivial also in
H™ (§|d), i.e.

(D
ay=06bj1+0, ¢ ,agh(ay)=J>2

©w

(J)
=a;=08541+0,7v , (38)

J l”’
with both (511 and (7) invariant polynomials. Here,

H™ (5]d) denotes the invariant characteristic cohomology
(the local cohomology of the Koszul-Tate differential in
the space of invariant polynomials) in antighost number J.
This property is proved in [16] in the case of a collection of
Pauli—Fierz fields and remains valid in the case considered
here, since the matter fields do not carry gauge symme-
tries. Thus, we can write that

H™ (5ld)=0 forall J>2. (39)
For the same reason, the antifields of the matter fields can
bring only trivial contributions to H (§|d) and H'P (8|d)
for J > 2, so the results from [16] concerning both Hy (d|d)
in pure ghost number zero and Hi™ (§|d) remain valid.
These cohomological spaces are still spanned by the undif-
ferentiated antifields corresponding to the ghosts

H, (8|d) and HI™ (§|d) : (n**) .

the groups (Hjy ((5|d))J22
which are finite-dimensional, the cohomo-

(40)

In contrast to and

(HF (8]d)) ;5.
logy Hip (6|d) in pure ghost number zero, known to be
related to global symmetries and ordinary conservation
laws, is infinite-dimensional, since the theory is free. More-
over, Hj (§]d) non-trivially involves the antifields of the
matter fields.

The previous results on H (§|d) and H™ (§|d) in
strictly positive antighost numbers are important because
they control the obstructions to removing the antifields
from the first-order deformation. More precisely, based on
the formulas (36)—(39), one can successively eliminate all
the pieces of antighost number strictly greater that two
from the non-integrated density of the first-order defor-
mation by adding only trivial terms. Thus, one can take,
without loss of non-trivial objects, the condition I <2 in
the decomposition (29). In addition, the last representative
is of the form (35), where the invariant polynomial is nec-
essarily a non-trivial object from Hi™ (§|d) for I =2, and
from H; (6]d) for I = 1, respectively.

4.2 First-order deformation

In the case I =2, the non-integrated density of the first-
order deformation (29) becomes

a=ag+a;+as. (41)
We can further decompose a in a natural manner as a sum
between three kinds of deformations

a = aPF) 4 glint) 4 4(RS) (42)
where aPF) contains only fields /ghosts/antifields from the
Pauli-Fierz sector, a("™®) describes the cross-interactions
between the two theories (so it effectively mixes both sec-
tors), and a(®S) involves only the Rarita-Schwinger sector.
The component aPF) is completely known (for a detailed
analysis see [16]) and satisfies individually an equation of
the type (27). It admits a decomposition similar to (41)

aFF) = aéPF) + aﬁPF) + agPF) , (43)
where
a’™ = ;77*“77”8[# M) 5 (44)
0" = W (@) by =1 Opby) . (45)
and agPF) is the cubic vertex of the Einstein—Hilbert La-

grangian plus a cosmological term?. Due to the fact that
q(int) and a®S) involve different kinds of fields, it follows
that (™) and a(®S) are subject to some separate equations

sa) — aum(i“t)“ , (46)
sa®9) = 8Hm(RS)“ , (47)
2 The terms aéPF) and aiPF) given in (44) and (45) differ

from the corresponding ones in [16] by a y-exact and a d-exact
contribution, respectively. However, the difference between our
aéPF)—F a&PFS and the corresponding sum from [16] is an s-exact
modulo d quantity. The associated component of antighost

(PF)

number zero, ay ~ ’, is nevertheless the same in both formula-
tions. As a consequence, the object aPF) and the first-order
deformation in [16] belong to the same cohomological class from

H (s|d).
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for some local m*’s. In the following, we analyze the gen-
eral solutions to these equations.

Since the massive Rarita—Schwinger field does not carry
gauge symmetries of its own, the massive gravitino sector
can only occur in antighost number one and zero. Thus,
without loss of generality, we can take

a(int) _ aéint) + agint) (48)

in (46), where the components involved in the right-hand
side of (48) are subject to the equations

'yagint) =0, (49)
(0)(int)y

(int) _ 8# m

0a™ +ag (50)

According to (35) in pure ghost number one and because
w! is spanned by

W = (M, Ouny) »

(int)

we infer that the most general expression of a; ~ as solu-
tion to (49) is®
agmt) =p*H (Npﬂnp +Np)l‘15'[p77,\]) , (51)

where N/ and N p);l are real, odd spinor-like functions,
with NP antisymmetric in its upper indices. All the ob-
jects denoted by N are gauge-invariant, so they may de-
pend on v, K,.,x, and their spacetime derivatives. At
this stage we recall the hypothesis on the conservation of
the number of derivatives on each field, which allows us to
simplify the solution (51) to (49) by imposing that the fol-
lowing requirements are simultaneously satisfied:

i) the interaction vertices present in aémt) as solution
to (50), assuming aém
tives of the fields; _

ii) the deformed field equations associated with a(()mt)
involve at most the first-order derivatives of the spinor
fields and at most the second-order derivatives of the
Pauli—Fierz field.

By applying the differential § on (51) and using the def-
initions (12)—(16), we infer that

t) . . .
) exists, contain at most two deriva-

sa{™ = Oum* +~vbo+co, (52)

3 We remark that, in principle, we might have added to agint)

a component dgmt) linear in the antifield of the Pauli-Fierz
field, h*#*”. However, such terms cannot produce a consistent
component of the first-order deformation in antighost number
zero, as is shown in Appendix B.

where

mt =~y (N¥,np + NP, 80,1y (53)

i-
by = 21/)5')/0‘5“ (Npuhap—F QNP/La[ph)\]a) , (54)
Co = (mz/_}a,yauNpu + izz’ﬁpyaﬁuaaNpﬂ) Np

+ (m%v”‘“Nﬂ +iYpgy P O NP,

+ ;WWWNAH) Olp - (55)
Taking into account the previous two requirements on the
derivative behaviour of aémt), from (54) we get that the
spinor-tensor N/, may contain at most one derivative of
the spinor 1),,, while the spinor-tensor N p);L can only de-
pend on the undifferentiated Rarita—Schwinger field. As
a consequence, we have that

NP, = ]\_]P’Ll/u -I-Np/\zaﬂlla, Np))t = Np/\(lf‘w" , (56)
and hence
o) = i (NPX 4y + NP7 0300, )
+1/1*“Np>\z¢aa[p77/\] , (57)

where ]\_]p);“ ]\_]p)“L, and N’”“L are real, bosonic 4 x 4 matri-
ces that may depend only on the undifferentiated spinor-
vector 9,,. Inserting (56) in (54)—(55), we get

bo = B (N0 + N7000) e
PN D) L

co = (mpay™ (N?)1hx + NP9 051 )
'Hizﬁ’Ya’B“aa (Np)}ﬂh + NPAZaAwJ)) Tlp

oo
i- _ _
+ U (N + N 00ths) ) Opprny - (59)

The condition that 5a§int) should be written like in (50) re-

stricts cg expressed in (59) to be a y-exact modulo d quan-
tity, i.e.

co =ym~+0un’ . (60)
At this stage it is useful to split cq as follows:
2
co=_ (co)y » (61)

k=0

where (co), denotes the piece from ¢y with k-derivatives.
According to this decomposition, it follows that each
(o), should be written in a y-exact modulo d form, such
that (50) is indeed satisfied. Using (59), we obtain that

(c0)g= ml/;a'y"‘“]vpthnp ) (62)
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As the right-hand side of (62) is derivative-free, it follows
that these terms neither reduce to a total derivative nor
can they be expressed in a ~y-exact form, so they must
vanish

Py NP 1py =0, (63)
Simple computation exhibits that (63) is checked if
YOyHEN, = (N (64)
whose general solution is expressed by
N’”;L = cléz’y’\ + 0252‘7” +c30”y,
+ ; (c1++2¢2+3c5) 7™, (65)

with c¢1, co, and c3 being some arbitrary functions depend-
ing on t,. As is shown in Appendix B, the functions ¢y,
c2, and c3 from (65) can be made to vanish by adding some
trivial, s-exact terms and by conveniently redefining the
functions IV ”A‘L. Consequently, we can take
_—
NP7 =0. (66)
The equation (60) for £ = 1 becomes
mi/_la’ya”NMZ (Oxho) mp + mZEaVQ“Np’\Zlbaa[pn,\]
=ymo+9unf , (67)

where ymg = (0mo/0h,) O, nx)- By taking the Euler—
Lagrange derivatives of the relation (67) with respect to 7,
we obtain that the quantity my,y**N p’\‘; (Ot ) should
reduce to a total derivative

m@a,yaujvp)\z (5,\1%) = a)\Mp)\ . (68)
The left-hand side of (68) is a full divergence if the follow-

ing conditions
NPT =0,
N, N T
,YO,yozuNp/\i — (,YO,ya,u,Np/\?i)

(69)
(70)

are simultaneously satisfied. The general solution to (69)—
(70) takes the form

\7 o o 1 o 1
N’”\H =k (O')\ (55—1— 2’7’)#) +o* (524‘ 2'7/\u>>
1
+ koo (5Z+ 2’7‘7#) +k4a”’\55

+ k3 (U’\"(SZ — U”"(Sl’) — 5ZVPA —l—w”A‘L

1 1
B 2 (527”; - 657/\0) + 2 (UJA’YPIL o O—PU/Y/\H) )
=N+ NV (71)

with

_ 1 1
NP =k (W (5;; + 27@) +or? (53 + 2ﬂ>>
(

1
+ koo (5; +, ﬂ) + kyo?? 5y, 72)

and (k;);_, , being some arbitrary constants. Under these
circumstances (if (69)—(70) are verified), we find that

My P NPT (Oztho) N +mbay* " NP 1be 01y
1o oo
=7 (‘wwwaﬂNF ,L%hp)
1 - _
+ 8)\ (2mwa'}/auNpN;wo'np)

} 1o
+ Myt (Np)‘z—i— 4N§)‘ u) Yo Opny] - (73)

By comparing the last equation to (67), we observe that the
last term from the right-hand side of (73) must be y-exact
modulo d. This takes place if

By (N4 NP, ) w0, (7
from which we further deduce
NP =~ P, 4 P (75)
where N p)“;; is solution to the equation
Py NP hy =0. (76)
It is simple to see that (76) holds if
ooy = (o)

whose general solution is given by
NP9 =k (02760 — 0?76))) + kad 7"
1. A PO Ao 1. Ao
+ ks ((5u’7p — by )+ kay” i
1 - — _
+, (k1 =2k +ks) (07297, —0?7,) . (78)

with (Ei)izl, , being some arbitrary functions depending

on .
Next, we analyze the solution to (60) for k = 2. It takes
the concrete form

i a N PAC N POLT
o Vs (YPHNPYG 4y HNPT) (9a0xths) 0
+it7" M 0o (N5005) Blomy
i- _
+ 2¢57pBMN/\aZ (Oats) a[,077>\]

=ymi+0,nY, (79)

with N p’\‘; and N p’\‘; determined previously. By taking the
Euler-Lagrange derivatives of (79) with respect to 1, and
by using the result that ym; = (dm1/0h,x) O, ) + O\,

with dmq /0h,x being the variational derivative of m; with
respect to h,y, it follows that

i- _ _
S0 (YN 4 TN ) (,0i5) = AP, (80)



272 C. Bizdadea et al.: No interactions for a collection of spin-two fields intermediated by a massive Rarita—Schwinger field

for some PP*. The left-hand side of the last equation is (,yaﬁuNpAa) _ 1 (ll—ﬁ By — 1@4)
written as a full divergence if a2
~ B B <0_/\a,7aﬂp _ O_)\B,yaap _ O_pa,yaﬁk
(aﬂpﬁ) (,YaﬁuNpAzL -l-’y)‘ﬁ“NpaZ) (Bathe) =0, (81) i i

+ O-Pﬁ,.yaa)\> (k2 o kS)
% (o_pa,yﬁa)\ O_)\a,yﬁcrp)
ki=ko=ks=0, (82) +E3 (Uﬁa7 ol ’)’pﬁ/\)

1 _ - _
+ 9 (kl —2ko + k3 + 2k4) ((U"Acrap
_o_o'po_)\a) ,_yﬁ + (oﬁ)\aap o oﬁpo_oc)\) ,Ya)

1

43 (ot ) (2077 (0™~ 0™0)
Ly (8 (Y0P (Batho) h+ 77 (0715) hap)) + (07707 + 0700 %) 4
( ao ,8)\ a,Bo_a)\) v ) . (88)

which further produces

POA

such that we have

1[)@ ( aguNpAJ +,7Aﬁl‘]\_]p("2) (8,;,8,\#&:) Tlp

it
+ 84 g (0P 7 — g*2PB7) (Da1hy) Oy + Oau .

(83) By direct computation it can be shown that the two com-
ponents of y*F# N p)“L satisfy the properties

N ~ T
() = () )

On the other hand, it is easy to see that

i3y P00 (NPX,005) O)pny

. S oo _ 0 aBuxrorc) _ (0 aocuxrord) T
-7 <1¢57a5“NW\M¢0’8{Ph>‘]O‘) + O’ 7 (’y N “)2 N (7 (’y T “)2) ) (90)
s 7 aBu nrpAo
i (9atp) YN 0 Ol (84) By means of the formulas (89)—(90) we can write
Inserting (83)—(84) in (79) and taking into account the re- i (Bap) ,yaguNp,\Jd] N
(o aOp

sult (82), (79) reduces to _
i -
=y (2% ( aﬁﬂNﬂ*“) wga[phk]a>

—i (8011[7)5) 'YOZBIJ‘NPAU waa[pn)\] ~ .
] GO A NCRBEWN

ikg -
- g ( ’)’)\50 )\,Ypﬁa) (axwo’) a[pnz\]

8 .
_ _ i-
:7m1+aun1 . (85) + Oa (_21/% < B NPre ) 1/103[,)77)\]) (91)
Now, we decompose 'y"‘ﬁ"N p)“L as follows: such that
yoPR PR = (ﬂyaﬁ“ﬁf”*‘;)l + (’yaﬁ“N”sz , (86) —1(Bathp) VNP Ol
1Ka 7 (Ao jap _ . pBo o
_ o _ap [ e 804 - )
with ] Vs (7 g Yo )( (% PURY
. 1/1- - 1- = (11% <’Ya’3“Np)‘Z> %/Jaa[phx]a)
(vorenes) =, ( ot + iy — 2k — k4> 2 !
17 aBu nTpAo )
X <0_/\a,7aﬂp_|_o_>\[3 aop O_pa,yaﬁk +aa ( Qwﬁ < N I/}Ua[PT})\]
- [k
_ Upﬁ,f:wk) — iy ( 84 (Uapykﬁff _ Uock,ypﬁo)
1. oBpa _ _oa, pBX__ _Bo, poA o c oo
Tl (2077 = 0T - 0P = (8% ) Gatba) O (92)

+ (]_61 — I_CQ +E3+E4) (O'UPO)\B —UU/\UPB)
Lo 7 A ison of (92) with (85) results in that the last t
a oA ap _ _op A comparison o wi results in that the last term
Ky (htks) (07 a*P*?) in (92) has to be y-exact modulo d. This holds if
x40 + (690X — g gP) 47)

LS k fe% o @ o
—I-; (]2‘3—1—];34) ((o_ﬁpo_aa 11/’6(( 84 (U P,))\ﬁ — 0 /\VPﬁ )

07 2 4 (57— P o) (i) ) @uto) ) =008 (93)
(57) s
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for some 6§ or, in other words, if

MEOBPAT _ 0 (’;4 (070737 oA} _ (,Yaﬂu Ko ) 2)
(94)
fulfills the condition
MePPAT — — (ApoorAB)T (95)
With the help of (90) we obtain the relations
MOBPAT = (DooPr)T (96)

which indicate that (95) cannot be satisfied, and hence nei-
ther can (93). As a consequence, the term —ithgM“FrPAo
(Oato) Orpny) from (92) must be canceled, which implies

MOPPA? =0, (97)
The solution to the above equation reads as
= 1 . 1 - _
ki= kg, ko= kq, ks=0, kys=0. (98)
4 8
Redenoting k4 by k, we finally find the relations
NTPANO A SO Ao __ ATpAC
NPT =koP?o7, NPT = NP
1 ag o 1 g
= 4k <0’>\ 6 —o” (5;}—{— 2(5”7”’\) . (99)
Replacing (66) and (99) in (57), we obtain that
(int) = koM (Y k oV
a; 1/’ ( '¢}H) My + 21/1 1/’ el
k eouv
+ 8'¢} p,y,u, wpa[unl/] . (100)

Meanwhile, if we insert (99) in (58), (73), (83)—(84),
and (92) and the resulting expressions in (52), we deduce
that the component of antighost number zero from the
first-order deformation is given by

in k i-
ag t) — 5 (U”’\EE)RS) — 2#’#’7“ pa’\wu> hox

ik (1~ - —
+, (2«/)*‘7%&” + Y + wﬂww">

(int)

X a[#h,,]p—i—do , (101)

where déint) represents the general, local solution to the ho-
mogeneous equation
’Ydéint) _ aum(int)y 7 (102)
with some local m(int)#, ,
Such solutions correspond to égmt) =0 and thus they
cannot deform either the gauge algebra or the gauge trans-
formations, but simply the Lagrangian at order one in

the coupling constant. There are two main types of so-
lutions to (102). The first one corresponds to m(# = (

and is given by gauge-invariant, non-integrated densities
constructed from the original fields and their spacetime
derivatives. According to (35) for both pure ghost and anti-

ghost numbers equal to zero, they are given by &g(int) _

dé)(lnt) ([Yu] s [Kuvapl), up to the conditions that they ef-
fectively describe cross-couplings between the two types
of fields and cannot be written in a divergence-like form.
Unfortunately, this type of solution must depend on the
linearized Riemann tensor (and possibly on its derivatives)
in order to provide cross-couplings, and thus would lead to
terms with at least two derivatives of the Rarita—Schwinger
spinors in the deformed field equations. Thus, by virtue of
the derivative order assumption, they must be discarded by
setting dg(mt) = 0. The second kind of solution is associated
with "4 =£ (0 in (102) and will be approached below.
We split the solution to (102) for m™# = 0 along the
number of derivatives present in the interaction vertices

2
d(()mt) _ Z(wl),

=0

(103)

where (JJ) contains i derivatives of the fields. The decompos-
ition (103) yields a similar splitting with respect to (102),
which becomes equivalent to three independent equations

V=i, i=0,2. (104)
Let us solve (104) for ¢ = 0. With the help of the defini-
tions of 7y acting on the generators from the BRST complex
we obtain
o oY

yw =-210

I R

(105)

Thus, (81) is the solution to (104) for i = 0 if and only if

(0)
ow
0y Oy 0.

(106)
. (0) o Y (0)

Since w has no derivatives, (106) implies that dw /Oh,,

must be constant. As the only constant and symmetric ten-

sor in four spacetime dimensions is the flat metric, we can

write

— ol
=po,

Oh (107)

with p being a real constant. Integrating (107) results in
that the solution to (104) for i = 0 reads as

(0)
W =ph+F (¢Y,),
but since it provides no cross-interactions, we can take

w=0. (108)
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Next, we pass to (104) for i = 1. We obtain that

(1)
(1)

4]
Yy =-210, w Ny +0uB" (109)
Ohpuy
SO (ulj) checks (104) for ¢ = 1 is and only if
(1)
dw
v =V. 11
0 Sh, 0 (110)

1
Because (w) includes just one spacetime derivative, the so-
lution to (110) is

5%

— . DPw
Ohyw 9o ’

(111)

where DP*” depends only on the undifferentiated fields and
is antisymmetric in its first two indices
DPHY = — DY (112)

Since DP* is derivative-free and h,,, is symmetric, (111)
implies that DP*¥ must be symmetric in its last two indices

DPHY — DPVE (113)
The properties (112) and (113) further lead to
DPHY — _DHPY — _ DIYP _ DI
= DVYPH = —DPVI = P (114)
so DPH = (. Consequently, (111) reduces to
(1)
;i::u =0, (115)
whose solution is expressed by
= L) +0,6" (s hag)  (116)

and is not suitable as the first term provides no cross-
interactions, while the second is trivial, so we have that

W=o. (117)

In the end, we solve (104) for ¢ = 2. From the relation

(2)
)
'y(c%):—2 8, 0%

i (118)

Ny + aufﬂ ,

we observe that (uzj) verifies (104) for ¢ = 2 if and only if

(119)

The solution to the last equation reads as

52

— uov
S, Do OUPV0

(120)

where U#¥8 displays the symmetry properties of the Rie-
mann tensor and involves only the undifferentiated fields
1, and hy,,. At this stage it is useful to introduce a deriva-
tion in the algebra of the fields b, and of their derivatives
that counts the powers of the fields and their derivatives,
defined by

N= Z (Opurepugs P 5

k>0

0
(O Fopw)

Then, it is easy to see that for every non-integrated density
X, we have that

(121)

dx

N = gy + 8,5 (122)

If x is a homogeneous polynomial of order I > 0 in the
fields and their derivatives, then Ny = Iy, Using (120),
and (122), we find that

1
NG =— oy KU + 0,00 (123)
(2
We expand w' as follows:
O]
G=-@, (124)
>0
where Nw =1lw ,suchthat
O]
NG =S@ (125)

>0

Comparing (123) with (125), we reach the conclusion that
the decomposition (124) induces a similar decomposition
with respect to U8 i.e.

v __ vB
urer? =3 UGSy -
1>0

(126)

Substituting (126) into (123) and comparing the resulting
expression with (125), we obtain that

(2)(l) 1

A 2ZKW”5U(‘ﬁl{)B +0,00), (127)
Introducing (127) in (124), we arrive at
1 _
0 = ) KuasT0 + 0, (128)
where
[Ty 1 av
grevs =% " zUﬁﬂ?' (129)

>0
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Even if consistent, an (uzj) of the type (128) would produce
field equations with two spacetime derivatives acting on
the Rarita—Schwinger spinors, which breaks the hypothesis
on the derivative order of the interacting theory. Thus, we
must take

@ —o.

(130)
The results (108), (117), and (130) enable us to take, with-
out loss of generality,

ai™ =0 (131)

n (101).

(Finz)illy, we analyze the component a(®5) from (42). As
the massive Rarita—Schwinger action from (1) has no non-
trivial gauge invariance, it follows that a(®5) can only re-
duce to its component of antighost number zero

a® = o ([y,]) (132)

which is automatically solution to the equation sa(RS) =

'ya(()RS) =0. It comes from a:(LRS) =0 and does not de-
form the gauge transformations (9), but merely modifies
the massive spin-3/2 action. The condition that a(RS) is
of maximum derivative order equal to one is translated
into

al™ =V () + Vo (1) s, (133)

where V and VP are polynomials in the undifferentiated
spinor fields (since they anticommute). The first poly-
nomial is a scalar (bosonic and real), while the tensor V#
is fermionic and anti-Majorana spinor-like.

The general conclusion of this subsection is that the
first-order deformation associated with the Pauli-Field
theory plus the massive Rarita—Schwinger field can be
written as follows:

S1=5{" 4 5 (134)

with
PF /d4 —I—alPF)—I—a(PF)) ) (135)

and
S(mt /d4 ( éint)+ (1nt)+a(RS)> (136)

The first two components of (136) are expressed by (100)
and (101) with a ’(mt) =0, while a(()RS) is given by (133).
This is the most general form that complies with all the
hypotheses that must be satisfied by the deformations, in-
cluding that related to the derivative order of the deformed
Lagrangian.

4.3 Second-order deformation

In this subsection we are interested in determining the
complete expression of the second-order deformation for
the solution to the master equation, which is known to be
subject to (25). Proceeding in the same manner as dur-
ing the first-order deformation procedure, we can write
the second-order deformation of the solution to the mas-
ter equation like the sum between the Pauli-Fierz and the
interacting parts

Sy = SEFF) 4 gm0 (137)

The piece 5’2 ) describes the second-order deformation in
the Pauli-Fierz sector and we will not insist on it, since
we are merely interested in the cross-couplings. The term

Séint) results as the solution to the equation

l i in
, (S ,67) ™0 4 gglint) — o (138)

where

(Sy,8:)) = (S(“’t 5<lnt)+2(s§PF>,s§im>) (139)

and S nt) s presented in (136). If we denote by A1) and
bt) the non-integrated densities of (S ,Sl)(mt) and of
Sém , respectively, the local form of (138) becomes

At — _9gp(int) 4 g pk (140)
with
h(Atm) =1, gn (s0) =0,
gh(n*)=1, (141)

for some local current n*. Direct computation shows that
An) decomposes like

A(int) _ Aéint) +A§int) 7 agh (Agint)) _ I,

I=0,1, (142)

with

in 1 * o 1 * o v
AP =y (k(—4 (w ) 4wy w) Ooixjo”

i (070.)0) e

k(2—-k
+ (22 ) (¢*H¢V+iw*a'yuywa> npa[uhu]p>

Lk (1 —k) <¢*u (8”1/)#) n 8[1/77;)] + <¢*[Mwu]

1 *0 o UV
+2'¢} /7/# 1/’0) 8[;L77p]8[1/77)\]0-pA> ) (143)
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and
A(int) _ (kﬁ(RS)h hm/)
o 7 40 v
3 )
+k (—LéRS>n“ + 107 (F70,)
ik - ik -
+ o PO+ Poy 0]
ik -
+ 16¢“ [7p ,'Yaﬁ] ¢p3[aﬂﬁ]> (ayh;u/ - ayh)
4
@0
— gy PHape Ol — Ty By 9 am,

+ (30 e 1 s e 021w

ik2 T (TN U 7 af v
+ (naa (DY — 2y PHp")

X 3[p7m> phu)a
i

> ~(RS
+ k2 (naa c§ >—2

Puyt? (974) Do
+ 7;%7“”1&"3@770]
- ;%7“””@ (¥701pm01) — ;JJ"V"”” (v p) o)
+ 16 @ [ )
—ith, [V, 7P| 8,1)) Blam)
- 116%7“””7“%@ (3[a77m)> h
ik?

o v

_ 1-
+ VP (074y) My + 21/%7'“/’) (3’\¢Ua[u770])
1_
+ 21/}071“/'0 (3’\%/11/) 8[;},770]
l 7. v «
+ g% [ 7] (9%40) Dlamg)
1_
+8wu7wp')’aﬁwva)\ (3[a775])> hpx
T
~ Dut* ("6’\)@[),,
g
X (o @pn” =" Dphrg = ahp)) +, Hy Py

X O (mro0n” — 1 (Dphrg — b)) + 3 9974
X (?V (ho(u0uyn” =07 (O(uhu)s — 205huw))
G,

% Oy (W7 0o —n* (0°hap — Bah))

- if Y™ PPN x

% Oy (hag0pn” =1 (Ophre — Oshypr))

+2k (0"V + VP 0o1)g) 0y + 26VH (07%) Ot

L.
+k aw# P 3[#77”

-0

+kVHO, (1/1"8[,,770]) + k%
n kE (ORV
1\ oy,

k
By, (,0m)

va,l/

Oy

B aL ‘flw
0,

(8H¢V) a[,0770]
’YO‘BW’ - @Z_}pﬂy 5;#%) a[oﬂ?ﬂ]

(144)

Since the first-order deformation in the interacting sec-
tor starts in antighost number one, we can take, without
loss of generality, the corresponding second-order deforma-
tion to start in antighost number two

b(int) _ b(()int) +b§int) +b§int) ’

agh (b?"t)) —1, 1=0,1,2, (145)
n* =nf+nf+nk, agh(nf)=1I,
1=0,1,2. (146)

By projecting (140) on various antighost numbers, we ob-
tain

in 1
'ng Y= O <2le¢> ] (147)
Agint) — 9 <6béint) +'Yb§mt)> _’_aﬂn’f , (148)
AG™ = =2 (8" 4 950" + gl (149)

Equation (147) can always be replaced, by adding trivial
terms, with

A = 0. (150)

Looking at A:(Lint) given in (143), results in that it can be
written like in (148) if

1
x=k(1-k) (W“ (0"%u) 0" O+, (w*[w”]

l *0 v
+2¢ '7# 1%) 8[;},77;)] 8[1/77/\](7p/\>
(151)
can be expressed like
X =0p+yw+01%. (152)

Supposing that (152) holds and applying § on it, we infer
that

Ix =7 (—0w)+0q (617). (153)
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On the other hand, using the concrete expression of x, we
have that

ox =" (k(l; 5§ (i (@l a”h)))
+ 0" (;k(l —k)§ (w*ﬂw,,n”a[#n,]))
1 (k=0 (2 @) e~ (g
— Ry — Ua[“lzy]’ygwfr) pra[uh/\]a> ANulp)
— 2057 (8 ) Upa[uhp]a)>
#0, (=) (o™ (00,1
— B = g — ool )
x a”),my)) 3[u77p1> :

The right-hand side of (154) can be written like in the

right-hand side of (153) if the following conditions are sim-
ultaneously satisfied

Sw — <1/_]ﬁ'7aﬁa (8uw0) hz _ <1Z]ﬁ,yaﬁ[pwy]
_@M,yawu _ Ua[“lzy]')’gwa> pra[uh,\]a> 8[#”9]
— 24y (0" 4) NP O B (155)
1 /-
SIe — (wﬁ,yaﬁo’ (8#1/} ) 4 (wﬁ,yaﬁ[ywu]

_IZJHVQMJV - o_a[u,&u],yawa) Up/\a[un)\]) 8[}L77p] .
(156)

(154)

Since none of the quantities g, ale pBIX 13, Or ol nfl are
d-exact, the last relations hold if the equations

Uy (Ouvs) = 0427,
by — gryy —o

(157)
oc[,u,qzl/],yawo_ — v
(158)

take place simultaneously. Assuming that both (157)
and (158) are valid, they further give

B (V571777 (8u5)) = 6 (0a027,) (159)
R (&B,yoﬁ[#wv] _ @H,Yawv . UQ[M@ZV]')’U¢U) -5 (80(]_’“”0‘) .
(160)

On the other hand, by direct computation we obtain that
o (V57°77 (Outbs)) = 0 (=1 (¥ (Butbe) =¥ (0u¥5)))
(161)
0n (57 P — iy — gy, )

=6 (=i Ty gy — 20y ) — oy oy,
(162)

so the right-hand sides of (161)—(162) cannot be written
like in the right-hand sides of (159)—(160). This means that
the relations (157)—(158) are not valid, and therefore nei-
ther are (155)—(156). As a consequence, x must vanish, and
hence we must set
k(1-k)=0. (163)
Using (163), we conclude that
k=1. (164)

Inserting (164) in (143), we obtain that

A =4 ((—i (w*[ﬂw‘” + ;w*ﬂwwp) RN
o e Yo
+ (w*ﬂw” + iw*“v“"z/;(,) nf’awhy]p) . (165)
Comparing (165) with (148), we find that
b =0 (166)
1
b = <

( ey + w*ﬂwwp> hiaBloa]

1
*o- Y

2 a '(/]0') uv

1 * v *0 v

4 (1/’ ﬂi/’ + 1/1 /VH 1/1 )npa[uhu]p~

(167)
Substituting (164) in (144) and using (167), we deduce

1
£ (n? -

A 2hy W)

AG) L o5pim0) _ gt 4o (_
i- v
+ VY (15— 1)) Db
+h7 (20uho)x + Oxhyo))
i-
+ 9" (h (b — 0" hy)
+ hf, (0P hpx — Bph) — 200 hap
3 1
+ 2hﬂ*aphM + 2hm,8ph””>
i 3
B () (’% 9 haah%>
—(V+V*d,1h,) h
L e 1
+ 8%7@“ ¥ ((h55 - 2%’) Iuhalp
+hE (30ahu, — 23,,hw))

+VH (hmraawu + W’a[uha]u

1
+ 4'y°‘B¢,,3[ahﬁ]H) > + I Oy
(168)
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where
orV _ oLy
" = Viegy R L R LA
Yot gy V7 VO 0 L Oy
1 (o"V T OFVPA
ny P v o nz
+4 (8’(/Jp Y 1/1p+V Y 3,)% Yoy 81/79 apw)\> .
(169)

We observe that (168) can be written like in (149) if and
only if
% — I = §,UPH . (170)

The right-hand side of (169) splits according to the number
of derivatives into

H“”:Hé“’—l—Hf”, (171)
where we made the notations
ORV 108V
Ik = Y B, 172
_ oLyer
mv” =V, + VPO,  +4Y = O,
oy,
1 -, orver
P UV _ uv a )
ty (V Y Oprhx —boy 0%, 3p¢u>
(173)

As II}"" has no derivatives, it cannot bring a divergence-
like contribution to (170), and II}"” contains just one
derivative, so in principle it may lead to a total derivative,
as required by (170). As a consequence, from (170) pro-
jected on the number of derivatives equal to zero, we find
that I15" is subject to the equation

o — I =o, (174)
which is, via (172), equivalent to
=== Vs, )
If we generically represent 9%V /9y, in the form
o, = Bl (1), (176)
(175) requires that
Aoy e (WOVp,l/aa)T : (177)
where
VHveT = MHg¥ — Mot + ;M“‘W’“’ = _yrra,
(178)

If we decompose VH#¥*7 as

VAT = VT VT R VT

FV ATV T (179)

the condition (177) implies the relations

V,u,z/ao' _ puroa V,u,z/ao' _ ysMuroa

0 - Y0 » V1 A | )
Brao Y ruroo
‘/‘2 TY T ‘/‘2 Ty (180)
proo __ysHvoQ praoc __ ysHvoQ
V3 TV T ‘/3 TYP ‘/4 TYPA — ‘/4 TYPA "
(181)

In a similar manner, if we expand M“* along the basis in
the space of constant, 4 X 4 complex matrices

MO = MEM1EME¥ " 4 M 4™

+ M;‘“ TV | M:‘“ TYPA ,

(182)

oY TyoA T

substitute (182) in (178), and take into account (180)—
(181), then we finally find that

Mg“:mo(’(/}’/)da'u, Mla'u.r:O,
M — o (87) 638, (183)
M??IJT’W =0, Mziau‘r'yp)\ =My (1/}1/) ET’YW\UO‘M )
(184)

where mg (¢"), ma (¢”),and my (¢¥) are arbitrary func-
tions. Replacing now (183)—(184) in (182) and then the re-
sulting expression in (176), we find that

8RV v\ 1 vy ., L : vy .7,
oy, =™ () PH +2ma (P7) hay ™ + 24ima (¥7) s
1 L ORX . ORY
= o) G ma )
R
r2mw) 57 (185)
with
X=g,0", Y=y, Z=ifusdt.  (186)

The equation (185) shows that the solution to (175) is
nothing but an arbitrary polynomial of X, Y, and Z, i.e.

V=V (X)Y,2). (187)
In order to complete the analysis of (170), we need to solve
its component of order one in the spacetime derivatives

Iy — " = o,uPm (188)
with IT{" given in (173) and UP*¥ containing no deriva-
tives. Taking into consideration (173), it follows that (188)
restricts VF* to satisfy the equation

V,u,)\o_up + Vppo_u/\ o Vw\g_,u,p o Vpuo_,u,)\ + ,l/_}l/ 8;:2p/\
m
— orver 1 (Vﬂf\'y#” — oy otvel ) _ oo
oY, 2 Oy Oy
(189)

The last equation is fulfilled if there exist some ob-
jects Q" such that the following conditions take place
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simultaneously:
Rou
Vm:_aai , (190)
RNp Rp
885 R 885 ot =0. (191)
" v

On the other hand, by adding to and subtracting from
the left-hand side of (189) the quantity (1/2) (8%Q*/0vx)
Xy = 0F (1/2(QPyH)) /01y, we can state that (189) is
checked if (190) and

aRQp O_VA _ aRQﬂ 0.#)\
oYy, o,

are simultaneously verified. By multiplying (192) from the
right with 1) we obtain the equation

198Qr ,,

Ty oap T 0

(192)

8RQP V_aRQp n laRQp ny oA
o g Wy gy YN0, (198)
which shows that (see (175) and (187))
QF=Qr(X,Y,Z) . (194)

Since Q* like in (194) must provide V#* via taking its right

derivative with respect to 15 (see (190)), it results that
Q#:Q(X7Y7Z)7Ha (195)

with Q (X,Y, Z) being an arbitrary polynomial. Formu-

las (190) and (195) together with some appropriate Fierz
identities further yield

VY — ﬁpP’)’“’ (X,Y,2), (196)
where
PP(X,Y, Z) = (PP) (XY, Z) v~
F(PP) g (XY, 2)77
(197)

The dependence on X, Y, and Z of the functions (PP*)
and (PP*) 5 enables us to conclude that the most gen-
eral form of these coefficients reads as

(PP)  (X,Y, Z) = d165,0" + dabho™ + dsblo™
(198)

(Ppl“/)a,@'y (X? K Z) = d46fa550” (199)

7]

where (d;);_; 5 5 4 are arbitrary polynomials in X, Y, and

Z. We remark that (199) gives in (133), and thus in Siint),
a contribution (up to a trivial, s-exact term) that is already
contained in (187) since

z/jp (Pplw)aﬂ'y ,Yaﬁ'yaﬂwy = 6d4@ﬂ“””3u¢p

=S (—6id41/_1H1/_1*“) — 6id4'(/_}p'7'u”'¢}l/ > (200)

so we can take, without loss of generality,
dy=0 (201)

in (199). Taking into account the last result and insert-
ing (198) in (197) and then in (196), we infer that

VI b, = ity Ot + doth” v 0,1y, + dsth” v Ouih,
= i O+ (o + o) 670t
+ ; (ds — d2) Py" Dby
= dippy Ot + ; (d2 +d3) P01y
o (] o) (B3 )
I (s — ) (Bt G )

Thus, up to an irrelevant, s-exact term, V#*9,,4,, contains,
besides the first two pieces, the last component, which is
a contribution already considered in (187). We can thus
forget about it by setting

ds—dy=0. (203)

At this stage, from (201) and (203) replaced in (198)—(199)
and the resulting relations further substituted in (197),
with the help of the representation (196) we determine the
relevant part of V#” under the form
VH = di (X, Y, Z) oyt
+d2 (X,Y, Z) (97" +41")
Consequently, we find that V#¥9,,14,, no longer contains the
unwanted (trivial or redundant) contributions, being pre-
cisely given by
VW@M/JV = dl (Xv K Z) @pﬂ}/pa}ﬂ/}‘u
+ds (X7 Y, Z) 1/_1”’)’“5@1%) . (205)

Based on the relations (204) and (205), we deduce that the
antisymmetric part of II{" must vanish

(202)

(204)

™ — 11" = 0. (206)

As a consequence of this step of the deformation pro-
cedure, on the one hand the results (164), (187), and (205)
completely determine the component (133), and hence the
cross-coupling part of the first-order deformation (136) like

ins * v 1 * v
5int) :/d4w (w (0 )y + ™" Oy

1 * v
+ 81/} P,yll wpa[,unl/]

1 o .
+ 5 (O_p)\ﬁ(()RS) _ ;1/1#7””‘)8’\1/11,> hp,\—l-;

1- _ -
x (2w“vﬂw” AR +mf’ﬂ“w"> Ouhulp

+V+ dlz/_}ppypa,uwﬂ + dz@”’wa(pl/}u)) . (207)
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On the other hand, (168), (174), (187), (204), and (206) of-

fer us the concrete form of by ") as the solution to (149)
like

i 1
bgmt) _ 8£E)RS) (hQ -

- LB (3 -h5) by
+hy (20ho1x + Orhyuo) )
- ;1E#70¢a (h (auh - auhw) +

2hy W)

he (0 hox — O,h)
3 1
—2h*P9, hop + 2hp>‘3phu)\+ Qh,“,aph””)
—iiz w8 (9%,) ( hh 3 okt
] uY v af 9 aocllp
i 1
~ gt ((nag = e )

+ 18 (30ahup — 20,h0n) )

+ ;L V+ d21 oy’ (haﬂw — (8,1, ) WM
Y Dby — Mot %%hﬁm)
+ 22 78 (hv”awp — By, 0,
—Yutr 0P R — iv“v“ﬁ U a[ochﬁ]u>
+5 (W00, ~ 05,000,
PO P Db ) - (206)
Now, the components (b?“”) I=0,

(167), and (208) yield the cross-coupling part of the
second-order deformation 5'2mt [d'z ( {int) —|—b(mt)+

bgmt)) as

in 1 * o 1 * o
Sé t) =/d4x (8 (w [uw 14 21/, Pyt wp) hﬁa[am
1

- 2¢*G (81%/}0) nyhm/

1 1
- 4 (ﬂj*“wy“‘ 41/’*07’“/@%) npa[uhl/]p
+ écéRS) (n? — 2R, hHY)
I~ v
- leﬂvxw ((h;\ - héi;) 8[Mhl’])\
+h7 (20uhox + Orhuo))

Y (h (Ouh— )+ 18, (8 iy — )

3 1
—2h*P0), hap + 2hf“aphM + 2hlw8ph””>

1,2 expressed by (166),

i- v, o 3 o
- B B (8%,) (hhaﬁ— 2hwhﬁ)

1
2 hﬁ) a[# ha]ﬂ

h di -
HVy U (hapw“ ~ (Outhu)

_ iz Buo v p_
168 ((h5y

+ 18 (30ahup — 20,han) )

1
— P70 hoyy — 4U“V7aﬁwua[ahﬁ]u>
dz - " p pv p
+ 9 wp hry 8,u¢ —h %ﬁﬂ/f
1
_ %walph*]# _ 47“70‘51/1”8@}%]“)

d _
+y (hwy“apw“
- hwl/;u’ypau% - J)HVpra[Vhp]u

1
— 4wwwa%ya[ahm#)> ) (209)
This ends the second step of the deformation procedure
for the Pauli-Fierz field and the massive Rarita—Schwinger
field.

5 Lagrangian formulation
of the interacting theory

The main aim of this section is to give an appropriate inter-
pretation of the Lagrangian formulation of the interacting
theory obtained in the previous section from the deforma-
tion of the solution to the master equation. In view of this,
we initially prove that the linearized versions of first- and
second-order formulations of spin-two field theory possess
isomorphic local BRST cohomologies. We start from the
first-order formulation of spin-two field theory

/d4 ( L0, (eetey”)

Habﬁu (eel'e”)

Sled ,wuab) =

1
w, v ac, 'b _  ac,, b
+266a €p (wu Wy T Wy w c)

(210)

where e * is the vierbein field and w4, are the components
of the spin connection, while e is the inverse of the vierbein
determinant

(1“))71 :

In order to linearize action (210), we develop the vierbein
as

e = (det (e (211)

e =0l L, =140, (212)
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where f is the trace of f,*. Consequently, we find that the
linearized form of (210) reads as (we come back to the no-
tations u, v, etc. for flat indices)

S(/) [f;w vw;wéﬁ] = / d'z (waaﬂ (Ouf — 0" fur)
1 (6%
+ 2w“ [38[a fﬁ]ﬂ
=5 (W hg = WP wayp)
(213)

We mention that the field f,, contains a symmetric, as well
as an antisymmetric part. The above linearized action is
invariant under the gauge transformations

Ocfuv = 0p€r —€un s, Ocwpap = —Ou€ag , (214)
where the latter gauge parameters are antisymmetric,
€08 = —€Bq. Eliminating the spin connection components

on their equations of motion (auxiliary fields) from (213)

1
Wuap (f) = o (O fajp = f ol = Oa f ) » (215)

we obtain the second-order action

S(/) [f;w y Wpag (f)] = S(/)/ [f,ut/]
1
e
1
+, (3“‘f”]°‘) (O fapw)
y Ou =01, (0" =0, )
(216)

subject to the gauge invariances

Oc fur = O €v) = €u

If we decompose f,,, in its symmetric and antisymmetric
parts

(217)

f,u,u = hpy+Bpua
the action (216) becomes

S ) = 5§ B
= [ (= @) @17) + @,1) (D)

~ (Ouh) @)+ 5 (0,1 (041) )

hyw =huy, Buw=—-By,, (218)

(219)

while the accompanying gauge transformations are given
by
(220)

Ochpuw =0 €0y, 0eBuy = —€u -

It is easy to see that the right-hand side of (219) is nothing
but the Pauli-Fierz action

So [huw s Buw] = S(I)DF (hu] - (221)

As we have previously mentioned, we pass from (213)—
(214) to (219)—(220) via the elimination of the auxiliary
fields w3, such that the general theorems from Section 15
of the first reference in [23] ensure the isomorphism

H (s'|d) ~ H (s"|d) ,

with ¢’ and s” the BRST differentials corresponding
to (213)—(214) and to (219)—(220), respectively. On the
other hand, we observe that the field By, does not appear
in (219) and is subject to a shift gauge symmetry. Thus, in
any cohomological class from H (s”|d) one can take a rep-
resentative that is independent of B,,, the shift ghosts
as well as of their antifields. This is because these vari-
ables form contractible pairs that drop out from H (s”|d)
(see the general results in Section 14 of the first reference
in [23]). As a consequence, we have that

H (s"|d) ~ H (s|d) ,

where s is the Pauli-Fierz BRST differential. Combin-
ing (222) and (223), we arrive at

H (s'|/d) ~ H (s"|d) ~ H (s|d) .

Because the local BRST cohomology (in ghost number
equal to zero and one) controls the deformation procedure,
it results that the last isomorphisms allow one to pass in
a consistent manner from the Pauli-Fierz version to the
first- and second-order ones (in vierbein formulation) dur-
ing the deformation procedure.

It is easy to see that one can go from (219)—(220) to
the Pauli-Fierz version through the partial gauge-fixing
B,,, = 0. This gauge-fixing is a consequence of the more
general gauge-fixing condition [27]

(222)

(223)

(224)

aﬂ[aeb]“ =0. (225)
In the context of the larger partial gauge-fixing (225), sim-
ple computation leads to the vierbein fields e *, their in-
verse e, the inverse of their determinant e, and the com-
ponents of the spin connection w,q; up to the second order
in the coupling constant in terms of the Pauli-Fierz field as

e = (>“+A(1>“+A2<
:5“—)\h“+3)\h”h“+..., (226)

e, = (0)a +>\ +>\2(
=48, + ;h“u— A8 haphﬂﬁ..., (227)

e=Q V@4
=1+ Ah+ A; (R* =2 b )+ ..., (228)
Wyab = A(‘}})uab + >\2(3J)p,ab +. (229)
where

W st = —Oahag (230)
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(2) 1 v v i av v
Wpab ==, <2hc[a (Onh®,) = 2hi" Oy by — <3uh[a ) hb]u) : + [8% (74 (0%90) hag +7"7 (8u9™) hpr) h}
(231) 0 . .
+ —,y*P (2 (0, hox +1970), h
Based on the isomorphisms (224), we can further pass to [16 (=™ (2 (07) hor + 020 )
the analysis of the deformed theory obtained in the previ- o B Bp T
ous sections. + (VyPyP —20°Py %ZJ;L) 8[ahg]p)
The component of antighost number equal to zero in rg
S(mt) is precisely the interacting Lagrangian at order one in + |— 8 Y y*? (Oatbg) hS hf]

a(int)+a(RS) L
0 i/

o _[1 [ (e (50, (100) + 1305 (1700))
m _ _ A MVp j1274 L
El = 4%( Iy 8u¢p+m7 %)h} 1 . B o
b5 B T
[y @) L

+ | g (Gt (Wih0c)

the coupling constant £{™) =

+| B @)

1-
— " (v*¥, (3hun0sh™

i, - AV VAT
s (P 9" — 20" 9y e, %huu} +h O\ — 2,007 h — 20°P 8, 5)
fo ) )
+ ) (M’u’YWﬂ (31/11’/\) hpx +¢p7pﬂy¢/\8[uhu]>\)] _7/\¢ (thuauhi - Zhﬁaphw\ - hvpa/\hZ))) ]
] g I v _3' -
VI [0, + (420079, | fgor @ ot
_ W @s) , OO QY[ i, 00 I ,
=€ £0 +ee b € (-21% D;MZ’ + _16wu7H ’ (&ﬂﬁ,\) hpzrh /\:|
(0)“(1” i aCO)(O R - 5 h .,
Cd
oy v [ (EOI() + =, Y0 (wuh’”)}
+(g)(g)b (g)c —l¢ abCD,ﬂ/J ! 9 TP PH
2 di s o a8 d p T unp)
+ | = %’Y”’Y ¢“5[ah@]u + haptHy f%%
©© O [ i 0 O | 8 2
+eey €, ¢a Dy, [ dy .
+ |- 2 hzw aﬂyy 8/14¢I/:|
Vs adoe B, (99 : 1 1
+ e iy ey + | —dapp iy (2¢p8[vhp]u+ 87a'8¢u8[ahﬂ]u>}
©) ~(a_p)(© "© YO [ . By ¥
4y @@, @ D (@, ], (232) _ [(g)L(()qu L ((g)b (é)c +(é)b (g)c )
(0)
where ( 5D, D, )]
(0)
D,u, = 8}1«, (233) (1)(0) ‘U‘(O) v i- abe 0) (1) (1) (0)
and + € €y €. _21/%17 D#wu+DHwV
W 1w, :01“1” i ©) (0)
DM: 8wuab7 b, (234) + (e)(e)b (e)c _;w abcD#,¢
L . . (om b0 [ i © ® W o
with W 5 given in (230). Along the same lines, the piece of OO 7@ " 1o _abe [ D
antighost number equal to zero from the second-order de- tlecn ce 21/)‘17 w¥utDuty
formation offers us the interacting Lagrangian at order two ; )
Lt i cant L0 _ pnt) ©O "W [ i g (@D M)
in the coupling constant £’ = b, +eey, €, —21/%17 D,y ,+D, vy,

Eéint) o béint)

_|_

Koy Y i 0) (2) (1) (1)
(g)(g)b (g)c —lanGbc Dy, +D, 1,
o af 2
¢u( 8u¢p+m7 1/11/)( —2haph )
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@ (©
TDuy

)

[(0)(2) #(0) ¥

+leey €, < @Za abchﬂ/} )]

i- ac ) ()
- D,

[\D»—l

( )(0) “(2)

o[

[ @ (@]
+|di%ay* Dy | €
[ @ [(o®"\]
+|di%ay* Dy | €
@ ((0@"Y]
+ |d19aY* Dy | €Y
1)(0) (0) 1
029 50n By,
[ OW o @ ]
+ |dye e 1/1( ’yb)DH’L/Jb
( Z
+ dQ(e)(e @D sy | (235)
where
@ 1)
Dy = &uary® (236)

and & .up like in (231). With the help of (226) and (228) we
deduce that EE)RS) + )\Egmt) + )\QL'émt) + - comes from ex-
panding the fully deformed Lagrangian written in terms of
either the original flat Rarita—Schwinger spinor 1),

; (—iae,”e 7Dy (€%hq) +mibay i)

A [eV (X,Y,Z)+di (X,Y, Z) Pay* Dy (e, )

E(int) —

+€d2 (X7 Y7 Z) eauqzj(a’yb) D#wb:| ) (237)

or the curved Rarita—Schwinger spinor 1,
. e - _
£09) = 0 (—ide ey e,y Doy e,y e, )

+A[eV (X,Y,2)+d1 (XY, Z) e,/ Yy D, (eyp*)

tedy (X,Y, Z) ("7 + e e® 0P7*) Dy (e, %)) -
(238)

The notations D, v, and D1, denote the full covariant
derivatives of 9, and v, respectively

1 1
D;ﬂ/}a = ,u,wa + QWuabwb + 87bcwawubc , (239)

1
Dy = 0uthp + 8wuab7ab¢p . (240)

The pieces linear in the antifields ¢}, from the deformed
solution to the master equation give us the deformed gauge

transformations for the Rarita—Schwinger fields as
o 1 v 1 af
OtV = A (0 I/J,L) €t 21ﬁ 8[p5u] + 87 ¢u3[aeﬁ]

1 1
+ A2 (_ 9 (&;ﬂ’u) eﬂhaﬁ + 167’”%@%%]

1 1
+ gV (hadpen = hpdjuex) = ¥ dhu
_ 6’)’aﬁ¢u€p3[ahﬁ]p)
W L
=X el/’u +)‘ 0 el/’u =+ (241)

The first two orders of the gauge transformations can be
put under the form

& O g 1( n ab
5e'¢}m—(uwm) 2€mn'¢} +47 wmeaba
(242)
) L* 1(
1) ewm = (@ﬂﬁm) € 2 € mnwn 47abwm € aby
(243)
where we used the notations
(0)* (m* 1
€ ==, = e (244)
©
€ ab— a[acb] ’ (245)
(1) 1 1
€ ap = _4eca[ahb]c + 8h[ca8b]ec + 8 (3ce[a) hlc)] .
(246)

Based on these notations, the gauge transformations of the
spinors take the form

N N
A((@me) ((2) A +>

)
)) C (1)
0)

1)
abwm( ab+)\6ab+
1
The gauge parameters (e ab and € 4 are precisely the first
two terms from the Lorentz parameters expressed in terms

of the flat parameters € via the partial gauge-fixing (225).
Indeed, (225) leads to

56wm -

1
4

Seaﬂ[aeb]“ =0, (248)
where
Sce =& Dpet —eLO,e" tele, . (249)
Substituting (226) together with the expansions
" (@ A
=€ +AE +...= (5;‘— 2ha“+...) e (250)
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and

0 1
€ab = (e)ab + )\(e)ab +...

(251)
in (248), we arrive precisely at (245)—(246). At this point
it is easy to see that the gauge transformations (247) come
from the perturbative expansion of the full gauge trans-
formations

Oethm = A ((alﬂbm) e+ emnP"™ + iVab@Z’meab) . (252)

Moreover, based on (252) and (249), it is easy to see that

S = X ((agw“) € —y7 0, + iv“%“ew) - (253)

In conclusion, under the above mentioned hypotheses
we have shown that the interactions between a massive
Rarita—Schwinger field and a spin-two field are described
by the coupled Lagrangian (237) or (238), while the gauge
transformations of the Rarita—Schwinger spinors are given
by (252) or (253). If we require in addition that the inter-
acting model remains PT-invariant, then the results (237)—
(238) remain valid up to the point that the functions
V, d1, and dy must depend only on X and Y (and not
on Z).

6 Impossibility of cross-interactions
between gravitons in the presence
of the massive Rarita—Schwinger field

As it has been proved in [16], there are no direct cross-
couplings that can be introduced among a finite number
of gravitons and also no intermediate cross-couplings be-
tween different gravitons in the presence of a scalar field.
In this section, under the hypotheses of locality, smooth-
ness of the interactions in the coupling constant, Poincaré
invariance, Lorentz covariance, and the preservation of the
number of derivatives on each field, we will prove that
there are no intermediate cross-couplings between differ-
ent gravitons intermediated by a massive spin-3/2 field. In
order to ensure the stability of the Minkowski vacuum (ab-
sence of negative-energy excitations or of negative-norm
states) we assume in addition that the metric in internal
space is positively defined. It is always possible to bring the
internal metric to the form §4p by a linear redefinition of
the Pauli—Fierz fields. This is the convention we will work
with in the sequel.

In view of this we start from a finite sum of Pauli-Fierz
actions and a massive Rarita—Schwinger action

SN /d4 ( CHRICE YS!
0uht) (0¥hi,)

— (02 (3R + ; (8,h*) (a“hA))

+/d4x¢;
X (_;ZZ;KYHVpanp"‘ 7;1/_}#7“”1/11/) ,
(254)

where h 4 denotes the trace of the field h'y” (ha = o h'y’),
with A the collection index, running from 1 to n. The gauge
transformations of the action (254) read as

Schin, = Ouely, Oty =0. (255)
The BRST complex comprises the fields/ghosts
620 = (hnvu) s (256)
and their antifields, respectively,
Goo = (WA 0™) it (257)

The BRST differential splits in this situation like in (8),
while the actions of § and « on the BRST generators are
defined by

S =2HY", Sy = mihay M —i0,Pn"M
(258)
Il = —20, W71 (259)
5p0 =0, dni=0, (260)
’YQSZO =0, WUZH =0, (261)
YR, =0umy, Yu=0, i =0, (262)

where H}” = K} — o’“’K 4 is the linearized Einstein ten-
sor for the field h” v In this case, the solution to the master
equation reads as

S =S [hih » tou] + / d'z (hj;,“”a(un;‘)) : (263)

The first-order deformation of the solution to the mas-
ter equation may be decomposed in a manner similar to the
case of a single graviton

a=aP) 4ot 4 RS (264)

The first-order deformation in the Pauli-Fierz sector,
aPF) is of the form [16]

(PF)

aFF) = ozéPF) + a(PF) , (265)
with
aéPF) ch77A UBya[wu] (266)

In (266) all the coefficients f5. are constant. The con-
dition that agPF) indeed produces a consistent a&PF) im-
plies that these constants must be symmetric in their lower
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indices [16]*

foe=1és- (267)
With (267) at hand, we find that
PF) * v v
of") = fhenite ((0m®) hS, —n™0,hG,) . (268)
The requirement that aﬁPF) leads to a consistent ozéPF) im-
plies that fapc must be symmetric [16]°
1
faBc = 3f(ABc) ) (269)

where, by definition, fapc = 6ap 5. Based on (269), we
obtain that the resulting a(()PF reads as in [16] (where this
component is denoted by ag and fapc by aabe)-
If one goes along exactly the same lines as in Sect. 4.2,
one obtains that /(1) = nt) +a (mt , Where
agint)

= hay™ @)+ Sy o

kA o
+ g Y $pOumiy » (270)

in ka RS) 1+ .
=" (amg ' Bt wm) W

T ( Py + 0“”1/7”7"%+1/7ﬂ‘”’“¢”)

X 8[Hh (271)

vip>
and k4 are some real constants. Meanwhile, we find in
a direct manner that

a®S) — agRS) :

(272)
with o™ given in (133).

Let us investigate next the consistency of the first-order
deformation. If we perform the notations

§70— [ ral®® o7
Sﬂiint) _ /d4x (a(int) +a(RS)> , (274)
§y = §FF) | gine) (275)

then the equation 5'1 , Sl + 2332 =0

sistency of the first-order deformation) equivalently splits
into two independent equations

(expressing the con-

(s S§PF>) 12580 = (276)

S, Sﬂ;int ) + <S](-1nt 7Silnt ) +28§éint) =0,
(277)

4 The term (266) differs from that corresponding to [16]
through a -y-exact term, which does not affect (267).

5 The piece (268) differs from that corresponding to [16]
through a d-exact term, which does not change (269).

where Sy = .§'§PF) + .§'§int). (276) requires that the constants
f$p satisfy the supplementary conditions [16]

fﬁBfg]D:O, (278)

thus they are the structure constants of a finite-dimensional,
commutative, symmetric, and associative real algebra A.

The analysis realized in [16] shows us that such an algebra

has a trivial structure (being expressed like a direct sum of

some one-dimensional ideals). Thus, we obtain that

¢, =0 if A#B. (279)

Let us analyze now (277). If we denote by Alint)
and B0 the non-integrated densities of the functionals

2 SA':EPF) ,S'Ym) + (5’£int) ,S'£int) and of S’;nt), respec-
tively, then (277) takes the local form
At = _954(nt) 4 g (280)
with
gh (A0) =1, gn(p™) =0,

gh (k") =1. (281)

The computation of A() reveals in our case the following

decomposition along the antighost number

Alimt) = Ant) L A@0 o (A?“t)) -1, I=0,1,
(282)

with
Alint) 1 A slugol Lo o po
1 =7 —4kAch (A +21/1 Y7,
X 0o + 47 (0"4o) nBy) P
1 A EYTN % 1 *0 UV

+ kBkC—QkAch P +41/’ Yy
X?’] pa[u V]p)
+ (kafBo — kske) (W“ (0"9u) POy

1 * v 1 *O0 v
+ (w vyl 4 wa) a[ﬂnﬁamf]aﬂ).
(283)
The concrete form of Agint) is not important in what fol-

lows and, therefore, we will skip it. Due to the expan-
sion (282), we have that 4(") and k* from (280) split like

ﬂ(int) _ ﬂéint) +ﬂ§int) _’_ﬂéint) 7
agh (8{™)) =1, 1=0,1,2, (284)
k* =kb+ k' +k5, agh(kf)=1I, I1=0,1,2.
(285)

By projecting (280) on the various decreasing values of
the antighost number, we obtain the equivalent tower of
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equations
1m 1
B0 _ g, (2kg> , (286)
Ai“‘” (5/8(1nt i /B(int))_’_aukf, (287)
AA(()int) (ﬂ(mt + /B(mt))"‘a,ukg (288)

By a trivial redefinition, (286) can always be replaced with
8™ = (289)

Analyzing the expression of AA:(Lint) in (283) we observe that
it can be written like in (287) if the quantity

X = (kafpe — kiko) (w*" (0" %y) P By gy + (w*[w

+ 9 ¢*07”V¢a> 3[M7§]; 8[1/77,% Up)\
(290)
can be put in the form
X =0p+yw+ 05" (291)

Assume that (291) holds. Then, by applying ¢ on this equa-
tion we infer
5% = 7 (—03) + 0, (35") - (292)

On the other hand, if we use the concrete expression (290)
of x, by direct computation we are led to

0 =" (; (kaffc —kske)

X0 (4P (R = 07hC)) )
+ " (; (kafso —kako) d (w*PwpnB”a[unS]D
+ (; (kafilo—kake) (Vo™ (0"v0) hE
= (Bt gy — ooy, )
X o")‘a[,,hf]a) 8[H77pc]
2 (@) 10N )
+0 ((5 (ka o~ knke) (5% 0"4,) ™
— s (B =Gy — ooy, )
X ap/\a[l,nf]) 6[M77pc]> .

(293)

The right-hand side of (293) can be written like in the
right-hand side of (292) if the following conditions are sim-

ultaneously fulfilled

; (kafpe —kpke) { [zﬁmaﬁ" (8"1hy) B2, — (d?m"‘ﬂ[“w"]
_iﬂ,}/awu — ga[ﬂl/_JV]"wag> pra[yhﬁa} 8[#7751

— 2y (0 0 pa[yhpc]a} = -0’ (294)

; (kafpc —kpke) (wmaﬁ 7 (0"4g) PP — i (%7"‘5[%”

_@M,Yawu . Ua[ﬂz/_}t/],yawa) UpAa[un/ﬁ) 8[“75 =85
(295)

However, from the action of § on the BRST generators we
observe that none of h4#3 8[a Bl nﬁ, or 8[/\77‘54] are 6-
exact. In consequence, the relatlons (294)—(295) hold if the
equations

Va7 (Ouibe) = 6026, (296)

and
ZZJ@’YO‘B[“W/] — PRy — Ud[uiy],yawa — §mve

take place simultaneously. The last equations are pre-
cisely (157) and (158), respectively. Due to the fact that
they do not involve (Pauli-Fierz) collection indices, some
arguments identical to those employed in Sect. 4.3 ensure
that (296) and (297) cannot be satisfied. As a consequence,
x must vanish, which further implies that

(297)

kpfig —kaks=0. (298)
Using (298) and (279) we obtain that for A # B
kaks =0, (299)

which shows that the Rarita—Schwinger field can couple to
only one graviton, so the assertion from the beginning of
this section is finally proved.

7 Conclusion

To conclude, in this paper we have investigated the cou-
plings between a collection of massless spin-two fields (de-
scribed in the free limit by a sum of Pauli-Fierz actions)
and a massive Rarita—Schwinger field using a powerful set-
ting based on local BRST cohomology. Initially, we showed
that if we decompose the metric like g, = ouw + ghu,
then we can couple the massive Rarita—Schwinger field
to hy, in the space of formal series with the maximum
derivative order equal to one in h,,. The interacting La-
grangian £ obtained here contains, besides the stan-
dard minimal couplings, also three types of non-minimal
couplings, which are not discussed in the literature, but
are nevertheless consistent with the gauge symmetries of
the Lagrangian £, —I—E(int), where L5 is the full spin-two
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Lagrangian in the vierbein formulation. Next, we have
proved, under the hypotheses of locality, smoothness of the
interactions in the coupling constant, Poincaré invariance,
(background) Lorentz invariance and the preservation of
the number of derivatives on each field, that there are no
consistent cross-interactions among different gravitons in
the presence of a massive Rarita—Schwinger field if the met-
ric in internal space is positively defined.
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Appendix A: Main conventions and properties
of the ~v-matrices

Here, we collect the main conventions and properties of the
representation of the «y-matrices employed in this paper.
We work with the charge conjugation matrix

C= —%Y0 (Al)
and with that representation of the Clifford algebra
VYo + VoV = 20,1, (A'Q)

for which all the y-matrices are purely imaginary. In add-
ition, 7o is Hermitian and antisymmetric, while (v;) =13
are anti-Hermitian and symmetric. We take a basis in the
space of spinor matrices of the form

1, s Yuwes Vuipons>  Vuiponspa s (A.3)
where
1 -
Vpr--pp = k! Z (-) Vi) V@) " Thor) - (A.4)
’ o€Sy

In the above definition, Sy is the set of permutations of
{1,2,...,k} and (—)? denotes the signature of a given per-
mutation ¢. This means that any 4 x 4 matrix M with
purely spinor indices can be expressed in terms of the ma-
trices (A.3) via

4

NG

k:O

k(k 1y 1

'Tr (1R M) Yy ooy - (AD)

We list below some Fierz identities that are useful
for the construction of consistent interactions between
the Pauli-Fierz field and the massive Rarita—Schwinger
spinor. They provide the products of the various elements

from (A.3) in terms of their linear combinations

'Y,ut/’)’p = 5{;{)’1/] +'7;wp ) (AG)
Yy = =0 L= (AT)
Yt = —6&5’63 7= (A8)
Va7 = —810837°, (A.9)
'Y;W;ﬂ/a = 5[0,;71/,0] + 'YHz/pa , (A.lO)
Vurpy 0T = =800 6711 — 6,050y )1 (A.11)

Moreover, in the chosen representation of the y-matrices
the elements of the basis (A.3) display the following sym-
metry/antisymmetry properties:

Y0Vu s VOVur (A.12)
are symmetric and
YoYuvp s  Y0OYuvprs YOV5 (Alg)
are antisymmetric. If we take v5 = 7912773 and work with
g0123 — —€0123 = 1, then
Vpl/p)\ — €'U'VPA’)/0’)/1’72’)/ — iEpl/p)\,y5 , (A14)
Vuvpr = —EpvpAY0V1Y2Y3 = 1€4upAYs5 - (A'15)

Appendix B: Proof of some assertions
made in Sect. 4.2

Initially, we show that our statement from footnote 3

indeed valid. The terms linear in the Pauli-Fierz anti-

field h*** that can in principle be added to aﬁ‘“t) have the

generic form

( 6 ~/1/(mt)’
(B.1)

dgint) R (Mﬁynp'i_ 8[p77)\])

where Mf, and M, [j,’,\ are bosonic, real, gauge-invariant
functions. Imposing that (B.1) satisfies the requirements
i)-ii) from Sect. 4.2, the functions M£, and Mf) are re-
stricted to depend at most on the undifferentiated Rarita—
Schwinger field. The consistency equation for ag‘“t) in anti-
ghost number zero

~(mt)

sai™ +yali™ = g, 5™ (B.2)

is independent of that for agint) of the form (57) since the

. . ~(int ..
former piece produces in agm ) components quadratic in the

terms
. . . . ~/(int
linear in h,,. Moreover, the consistency equation of al( )

Pauli-—Fierz field, while the latter introduces in aéint)

is independent of that implying &/1/(int) due to the differ-
ent number of derivatives contained in these two types of
terms, so (B.2) is equivalent to the equations

0™ yag ™ = 9,50, (B.3)
56,/1/(mt) +’ydg(1nt) _ 8u3(/)l(lnt) . (B4)
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Now, we prove that (B.1) is not consistent in antighost

. . ~/(int ~//(int
number zero, i.e. there are no solutions ao(m) or ao(m)

to (B.3)—(B.4). To this end we use the fact that the lin-
earized Einstein tensor (17) can be written as

H* = 8a85¢>“"‘”5 , (B.5)
with
pHavB — ; (—h“”craﬁ + hoVghB 4 pHB G — pB g
+h (U“”Jo‘ﬁ — O"Uﬂ(fa”)) . (B.6)
By direct computation, we find that
5(}/1(“11;) = —23aaﬁ¢“wﬁMﬁu77p
= 0o (=2 (9p"™P) ME,n,)
+ aﬁ (2¢Mauﬁaa (M[f,,np)

+ ¢WVB8[H MS]Valﬁnp] +

(1)
_1_7 <¢#o¢l/5 <8[HM§]uhBP — 2M£V Fpa5> )

1 v,
9 " 'BaluMg] [v,8"e

(1)
~ (ygterB) (a[MMg]Vhﬁp—zngrpw) :
(B.7)

where

(1) 1

I pap = 9 (Oahipp+ Ophap — phap) - (B.8)
Comparing (B.7) with (B.3) and observing that the term
in (B.7) involving (y¢***?) comprises the symmetric
derivatives 91, it follows that this piece, which is con-
strained to contribute to a full divergence, can only re-
alize this task together with the part proportional with
M i 18" Accordingly, the y-exactness modulo d of the
right-hand side of (B.7), which is demanded by (B.3), re-
quires that the functions Mf, are subject to the equations

0, My, =0, (B.9)
possessing the trivial solution
MP, =0, (B.10)

since M#,, are derivative-free (they depend only on the un-
differentiated spinor-vector ). In an identical manner,
starting with

0ay "™ = —20,850" P ML),y
= 0a (=2 (95¢"7) ML301 )
+ 05 (20" 00 (M0
+ ;qwayﬁa[uM g])[u,ﬁ] 2PN
(26777 (0, M2 0 hays = ML, 0a0hys ))
—9 (,y(z)uauﬁ)
% (ML hais — Mfy,0adighys) (B11)

alv

we argue that the functions M, [j{} must obey the equations

A
MLy, 5 =0, (B.12)

which, due to the fact that M 53 are derivative-free, possess
only the trivial solution

M%) =0. (B.13)
If we substitute the results (B.10) and (B.13) into (B.1), we
conclude that there is no term linear in the Pauli-Fierz anti-
field h*** that can be added to aﬁ‘“t) such as to give a consis-
tent component of antighost number zero in the first-order
deformation of the solution to the master equation.

Finally, we show that we can always make the func-
tions ¢y, ¢2, and ¢ from (57) vanish via adding some triv-
ial terms and making some redefinitions of the functions
NP* In view of this, we insert (65) in (57), such that the

gy (int)

part from a; ’ proportional with ¢, cg, or c3 reads as

1
T (Cl ,C2, 03) = [Cl (w*)vyuwﬂ _ sz,yuw\wy)
+ez (Y Y =i )
. 3
+es (1/1 Pt = *wyﬂ M -
(B.14)
Based on the second definition in (12) related to the

Koszul-Tate differential and on the Fierz identities from
the previous appendix section, we obtain that

6 ("9 ™) = —Amy™ gy,
i, (8Y i)

X Oty + 15 PO, (B.15)
8 (Ui ™) = —2my iy, + 2y

—2mepy Ny,

+2i (U 0ty 0

+ 207 PO (B-16)

1) (’(/J:’y“”)‘l/_);) = 4m’(/):ny#w>\ _ 4mw*u,}/>\wu _2mw:,}/yu)\wy
a0+ 270,

— 2igp*Hy,,, OV (B.17)

Relying on the above results, we can rewrite the three
terms present in (B.14) in the form

* 1 * v
¢ (w = Ui A%) A

C1 * K3 * ok * vp, 7.k
=5 [ oh (P = 20 Uy )
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iCl
+ 3m

1 * * 1 * v
_|_2w myupa[xwﬂ] +¢ﬂ5[uw>\] + 2¢u7u p>\6u¢p:| N
(B.18)

1
[(w“w + 21/)*[%””) Oyt

ca (V™ b — iy ) 1
=3 [3621 (P Pytapt — 205y PP iy PP 77"}
icy [_ (w*)\,ylw_i_w*[lt,yu]x) 6[Lwl/

_|_
3m
200", O dag D — 30,0, |
(B.19)

* 3 * v
c3 (1/’ “7#1/’/\ - 21/’,[)’” Al/’u) X
(4 Pytapt — BYp AP *H 4 iy ) np}
ics A KA Y *[p V)N
o (4w 20 ) o,

140", 0P 4N 120597010, 1
(B.20)

|: C3
=S
12m

By adding the relations (B.18)—(B.20), we observe that
T (¢1,¢2,c3) can be made to vanish by adding some s-
exact terms to the first-order deformation (™ and by
appropriately redefining the functions N ‘7)“;.
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