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Abstract. The cross-couplings among several massless spin-two fields (described in the free limit by a sum of
Pauli–Fierz actions) in the presence of a massive Rarita–Schwinger field are investigated in the framework
of the deformation theory based on local BRST cohomology. Under the hypotheses of locality, smoothness
of the interactions in the coupling constant, Poincaré invariance, Lorentz covariance, and the preservation of
the number of derivatives on each field, we prove that there are no consistent cross-interactions among differ-
ent gravitons with a positively defined metric in internal space in the presence of a massive Rarita–Schwinger
field. The basic features of the couplings between a single Pauli–Fierz field and a massive Rarita–Schwinger
field are also emphasized.

PACS. 11.10.Ef

1 Introduction

Over the last twenty years there has been a sustained ef-
fort to construct theories involving a multiplet of spin-two
fields [1–4]. At the same time, various couplings of a single
massless spin-two field to other fields (including itself) have
been studied in [5–15]. In this context, the impossibility of
cross-interactions among several Einstein gravitons under
certain assumptions was proved recently in [16] bymeans of
a cohomological approach based on the Lagrangian BRST
symmetry [17–21]. Moreover, in [16], the impossibility of
cross-interactions among different Einstein gravitons in the
presence of a scalar field has also been shown.
The main aim of this paper is to investigate the cross-

couplings among several massless spin-two fields (de-
scribed in the free limit by a sum of Pauli–Fierz actions)
in the presence of a massive Rarita–Schwinger field. More
precisely, under the hypotheses of locality, smoothness of
the interactions in the coupling constant, Poincaré invari-
ance, (background) Lorentz invariance, and the preserva-
tion of the number of derivatives on each field, we prove
that there are no consistent cross-interactions among dif-
ferent gravitons with a positively defined metric in internal
space in the presence of a massive Rarita–Schwinger field.
This result is obtained by using the deformation tech-
nique [22] combined with the local BRST cohomology [23].
It is a well-known fact that the spin-two field in metric for-

a e-mail: bizdadea@central.ucv.ro
b e-mail: manache@central.ucv.ro
c e-mail: danubiusmd@yahoo.com
d e-mail: osaliu@central.ucv.ro
e e-mail: scsararu@central.ucv.ro

mulation (Einstein–Hilbert theory) cannot be coupled to
a spin-3/2 field. However, as will be shown below, if we
decompose the metric as gµν = σµν +λhµν , where σµν is
the flat metric and λ is the coupling constant, we can in-
deed couple the massive spin-3/2 field to hµν in the space
of formal series with the maximum derivative order equal
to one in hµν . Thus, our approach envisages two different
aspects. One is related to the couplings between the spin-
two fields and one massive Rarita–Schwinger field, while
the other focuses on proving the impossibility of cross-
interactions among different gravitons via a single massive
Rarita–Schwinger field. In order to make the analysis as
clear as possible, we initially consider the case of the cou-
plings between a single Pauli–Fierz field [24] and a massive
Rarita–Schwinger field [25]. In this setting, we compute the
interaction terms to order two in the coupling constant.
Next, we prove the isomorphism between the local BRST
cohomologies corresponding to the Pauli–Fierz theory and
to the linearized version of the vierbein formulation of the
spin-two field, respectively. Since the deformation proced-
ure is controlled by the local BRST cohomology of the free
theory (in ghost numbers zero and one), the previous iso-
morphism allows us to translate the results emerging from
the Pauli–Fierz formulation into the vierbein version and
conversely. In this manner, we obtain that the first two
orders of the interacting Lagrangian resulting from our set-
ting originate in the development of the full interacting
Lagrangian
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e
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Here, e µa represent the vierbein fields, e is the inverse of
their determinant, e = (det (e µa ))

−1
, Dµ signifies the full

covariant derivative, and γa stand for the flat Dirac ma-
trices. The fields ψν denote the (curved) Rarita–Schwinger
spinors (ψν = e

a
νψa). The quantities denoted by V , d1, and

d2 are arbitrary polynomials of X ≡ ψ̄aψa, Y ≡ ψ̄aγabψb,
and Z = iψ̄aγ5ψ

a. Here and in the sequel λ is the coup-
ling constant (deformation parameter). We observe that
the first two terms in L(int) describe the standard mini-
mal couplings between the spin-two and massive Rarita–
Schwinger fields. The last terms from L(int), namely those
proportional to V , d1, or d2, produce non-minimal cou-
plings. To our knowledge, these non-minimal interaction
terms are not discussed in the literature. However, they are
consistent with the gauge symmetries of the Lagrangian
L2+L(int), where L2 is the full spin-two Lagrangian in the
vierbein formulation. With this result at hand, we start
from a finite sum of Pauli–Fierz actions with a positively
defined metric in internal space and a massive Rarita–
Schwinger field, and prove that there are no consistent
cross-interactions between different gravitons in the pres-
ence of such a fermionic matter field.
This paper is organized in seven sections. In Sect. 2 we

construct the BRST symmetry of a free model with a sin-
gle Pauli–Fierz field and one massive Rarita–Schwinger
field. Section 3 briefly addresses the deformation procedure
based on BRST symmetry. In Sect. 4 we compute the first
two orders of the interactions between one graviton and
one massive Rarita–Schwinger spinor. Section 5 presents
the Lagrangian formulation of the interacting theory. Sec-
tion 6 is devoted to the proof of the fact that there are no
consistent cross-interactions among different gravitons in
the presence of a massive Rarita–Schwinger field. Section 7
exposes the main conclusions of the paper. The present
paper also contains two appendices, in which various no-
tations and conditions are listed and also some statements
from the body of the paper are proved.

2 Free model: Lagrangian formulation
and BRST symmetry

Our starting point is represented by a free model, whose
Lagrangian action is written like the sum between the ac-
tion of the linearized version of Einstein–Hilbert gravity
(the Pauli–Fierz action [24]) and that of a massive Rarita–
Schwinger field [25]

SL0 [hµν , ψµ] =

∫
d4x

(
−
1

2
(∂µhνρ) (∂

µhνρ)

+ (∂µh
µρ) (∂νhνρ)− (∂µh) (∂νh

νµ)

+
1

2
(∂µh) (∂

µh)−
i

2
ψ̄µγ

µνρ∂νψρ

+
m

2
ψ̄µγ

µνψν

)

≡

∫
d4x
(
L(PF)+L(RS)0

)

= SPF0 [hµν ]+S
RS
0 [ψµ] . (1)

Everywhere in this paper we use the flat Minkowski metric
of ‘mostly minus’ signature, σµν = (+−−−). In the above,
h denotes the trace of the Pauli–Fierz field, h = σµνh

µν ,
and the fermionic fields ψµ are considered to be real (Ma-
jorana) spinors. We work with a representation of the Clif-
ford algebra

γµγν+γνγµ = 2σµν1 , (2)

in which all the γ matrices are purely imaginary, so that we
have

γᵀµ =−γ0γµγ0 , µ= 0, 3 , (3)

where here and in the sequel the notation Nᵀ signifies the
transpose of the matrixN . In addition, γ0 is Hermitian and
antisymmetric, while (γi)i=1,3 are anti-Hermitian and sym-
metric. TheDirac conjugation is defined as usual through

ψ̄µ = (ψµ)
†
γ0 , (4)

and the Majorana conjugation via

ψc = (Cψ)ᵀ , (5)

with the corresponding charge conjugation given by

C =−γ0 . (6)

(The operation † signifies the Hermitian conjugation.) Ac-
tion (1) possesses an irreducible and Abelian generating set
of gauge transformations

δεhµν = ∂(µεν) , δεψµ = 0 , (7)

with εµ being bosonic gauge parameters. The parentheses
signify symmetrization; they are never divided by the num-
ber of terms: e.g., ∂(µεν) = ∂µεν +∂νεµ, and the minimum
number of terms is always used. The same is valid with
respect to the notation [µ · · · ν], which means antisym-
metrization with respect to the indices between brackets.
In order to construct the BRST symmetry for (1), we

introduce the fermionic ghosts ηµ corresponding to the
gauge parameters εµ and associate antifields with the ori-
ginal fields and ghosts, respectively denoted by

{
h∗µν , ψ∗µ

}

and {η∗µ}. (The statistics of the antifields is opposite
to that of the correlated fields/ghosts.) The antifields of
the Rarita–Schwinger fields are bosonic, purely imaginary
spinors. Since the gauge generators of the free theory under
study are field independent and irreducible, it follows that
the BRST differential simply decomposes into

s= δ+γ , (8)

where δ represents the Koszul–Tate differential, graded by
the antighost number agh (agh (δ) =−1), and γ stands for
the exterior derivative along the gauge orbits, whose de-
gree is named pure ghost number pgh (pgh (γ) = 1). These
two degrees do not interfere (pgh (δ) = 0, agh (γ) = 0). The
overall degree from the BRST complex is known as the
ghost number gh and is defined like the difference between
the pure ghost number and the antighost number, such
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that gh (δ) = gh (γ) = gh (s) = 1. If we make the notations

Φα0 = (hµν , ψµ) , Φ
∗
α0
=
(
h∗µν , ψ∗µ

)
, (9)

then, according to the standard rules of the BRST formal-
ism, the degrees of the BRST generators are valued like

agh (Φα0) = agh (ηµ) = 0 , agh
(
Φ∗α0
)
= 1 ,

agh (η∗µ) = 2 , (10)

pgh (Φα0) = 0 , pgh (ηµ) = 1 ,

pgh
(
Φ∗α0
)
= pgh (η∗µ) = 0 . (11)

The actions of the differentials δ and γ on the generators
from the BRST complex are given by

δh∗µν = 2Hµν , δψ∗µ =mψ̄λγ
λµ− i∂ρψ̄λγ

ρλµ , (12)

δη∗µ =−2∂νh
∗µν , (13)

δΦα0 = 0 = δηµ , (14)

γΦ∗α0 = 0 = γη
∗µ , (15)

γhµν = ∂(µην), γψµ = 0, γηµ = 0 , (16)

whereHµν is the linearized Einstein tensor

Hµν =Kµν −
1

2
σµνK , (17)

with Kµν and K the linearized Ricci tensor and, respec-
tively, the linearized scalar curvature, both obtained from
the linearized Riemann tensor

Kµναβ =−
1

2
(∂µ∂αhνβ+∂ν∂βhµα

−∂ν∂αhµβ−∂µ∂βhνα) , (18)

via its trace and double trace, respectively,

Kµα = σ
νβKµναβ , K = σ

µασνβKµναβ . (19)

The BRST differential is known to have a canonical
action in a structure named antibracket and denoted by
the symbol (, ) (s· =

(
·, S̄
)
), which is obtained by decree-

ing the fields/ghosts conjugated to the corresponding anti-
fields. The generator of the BRST symmetry is a bosonic
functional of ghost number zero, which is the solution to
the classical master equation

(
S̄, S̄
)
= 0. The full solution

to the classical master equation for the free model under
study reads as

S̄ = SL0 [hµν , ψµ]+

∫
d4xh∗µν∂(µην) . (20)

3 Deformation of the solution to the master
equation: a brief review

We begin with a “free” gauge theory, described by a La-
grangian action SL0 [Φ

α0 ], invariant under some gauge

transformations δεΦ
α0 = Zα0α1ε

α1 , i.e.
δSL0
δΦα0
Zα0α1 = 0, and

consider the problem of constructing consistent interac-
tions among the fields Φα0 such that the couplings preserve

both the field spectrum and the original number of gauge
symmetries. This matter is addressed by means of reformu-
lating the problem of constructing consistent interactions
as a deformation problem of the solution to the master
equation corresponding to the “free” theory [22]. Such a re-
formulation is possible due to the fact that the solution
to the master equation contains all the information on the
gauge structure of the theory. If an interacting gauge the-
ory can be consistently constructed, then the solution S̄ to
the master equation

(
S̄, S̄
)
= 0 associated with the “free”

theory can be deformed into a solution S

S̄→ S = S̄+λS1+λ
2S2+ . . .

= S̄+λ

∫
dDxa+λ2

∫
dDx b+ . . . , (21)

of the master equation for the deformed theory

(S, S) = 0 , (22)

such that both the ghost and antifield spectra of the ini-
tial theory are preserved. Equation (22) splits, according to
the various orders in the coupling constant (deformation
parameter) λ, into a tower of equations:

(
S̄, S̄
)
= 0 , (23)

2
(
S1, S̄

)
= 0 , (24)

2
(
S2, S̄

)
+(S1, S1) = 0 , (25)

(
S3, S̄

)
+(S1, S2) = 0 , (26)

...

Equation (23) is fulfilled by the hypothesis. The next
equation requires that the first-order deformation of the so-
lution to the master equation, S1, is a cocycle of the “free”
BRST differential s· =

(
·, S̄
)
. However, only cohomologi-

cally non-trivial solutions to (24) should be taken into ac-
count, as the BRST-exact solutions can be eliminated by
some (in general non-linear) field redefinitions. This means
that S1 pertains to the ghost number zero cohomological
space of s, H0 (s), which is generically non-empty because
it is isomorphic to the space of physical observables of the
“free” theory. It has been shown (by the triviality of the an-
tibracket map in the cohomology of the BRST differential)
that there are no obstructions in finding solutions to the
remaining equations, namely (25), (26), etc. However, the
resulting interactions may be non-local, and obstructions
might even appear if one insists on their locality. The an-
alysis of these obstructions can be carried out by means of
standard cohomological techniques.

4 Consistent interactions between the spin-two
field and themassive Rarita–Schwinger field

4.1 Standard material: H(γ) and H(δ|d)

This section is devoted to the investigation of consistent
cross-couplings that can be introduced between a spin-two
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field and a massive Rarita–Schwinger field. This matter is
addressed in the context of the antifield-BRST deforma-
tion procedure briefly addressed in the above and relies on
computing the solutions to (24)–(26), etc., with the help of
the free BRST cohomology.
For obvious reasons, we consider only smooth, local,

(background) Lorentz invariant quantities and, moreover,
Poincaré invariant quantities (i.e. we do not allow explicit
dependence on the spacetime coordinates). The smooth-
ness of the deformations refers to the fact that the de-
formed solution to the master equation (21) is smooth in
the coupling constant λ and reduces to the original solu-
tion (20) in the free limit λ = 0. In addition, we require
conservation of the number of derivatives on each field (this
condition is frequently met in the literature [14, 16]). If we
make the notation S1 =

∫
d4xa with a a local function,

then (24), which as we have seen controls the first-order de-
formation, takes the local form

sa= ∂µm
µ , gh (a) = 0 , ε (a) = 0 , (27)

for some local mµ, and it shows that the non-integrated
density of the first-order deformation pertains to the local
cohomology of the BRST differential in ghost number zero,
a ∈H0 (s|d), where d denotes the exterior spacetime differ-
ential. The solution to (27) is unique up to s-exact pieces
plus divergences

a→ a+ sb+∂µn
µ , gh (b) =−1 , ε (b) = 1 ,

gh (nµ) = 0 , ε (nµ) = 0 . (28)

At the same time, if the general solution of (27) is found to
be completely trivial, a= sb+∂µn

µ, then it can be made to
vanish a= 0.
In order to analyze (27), we develop a according to the

antighost number

a=
I∑

i=0

ai , agh (ai) = i , gh (ai) = 0 , ε (ai) = 0 ,

(29)

and take this decomposition to stop at some finite value I
of the antighost number. The fact that I in (29) is finite
can be argued like in [16]. Inserting the above expansion
into (27) and projecting it on the various values of the anti-
ghost number with the help of the split (8), we obtain the
tower of equations

γaI = ∂µ
(I)
m
µ

, (30)

δaI +γaI−1 = ∂µ
(I−1)
m

µ

, (31)

δai+γai−1 = ∂µ
(i−1)
m

µ

, 1≤ i≤ I−1 , (32)

where
(
(i)
m
µ)

i=0,I
are some local currents with agh

(
(i)
m
µ)

= i. Moreover, according to the general result from [16] in
the absence of the collection indices, (30) can be replaced1

1 This is because the presence of the matter fields does not
modify the general results on H (γ) presented in [16].

in strictly positive antighost numbers by

γaI = 0, I > 0 . (33)

Due to the second-order nilpotency of γ (γ2 = 0), the solu-
tion to (33) is clearly unique up to γ-exact contributions

aI → aI +γbI , agh (bI) = I ,

pgh (bI) = I−1 , ε (bI) = 1 . (34)

Meanwhile, if it turns out that aI reduces to γ-exact terms
only, aI = γbI , then it can be made to vanish, aI = 0. The
non-triviality of the first-order deformation a is thus trans-
lated at its highest antighost number component into the
requirement that aI ∈HI (γ), where HI (γ) denotes the
cohomology of the exterior longitudinal derivative γ in
pure ghost number equal to I. Thus, in order to solve (27)
(equivalent to (33) and (31)–(32)), we need to compute the
cohomology of γ,H (γ), and, as it will be made clear below,
also the local cohomology of δ in pure ghost number zero,
H (δ|d).
Using the results on the cohomology of the exterior lon-

gitudinal differential for a Pauli–Fierz field [16], as well as
the definitions (15) and (16), we can state that H (γ) is
generated on the one hand by Φ∗α0 , η

∗
µ, ψµ and Kµναβ to-

gether with all of their spacetime derivatives and, on the
other hand, by the ghosts ηµ and ∂[µην]. Thus, the most
general (and non-trivial), local solution to (33) can be writ-
ten, up to γ-exact contributions, as

aI = αI
(
[ψµ] , [Kµναβ ] ,

[
Φ∗α0
]
,
[
η∗µ
])
ωI
(
ηµ, ∂[µην]

)
,

(35)

where the notation f ([q]) means that f depends on q and
its derivatives up to a finite order, while ωI denotes the
elements of a basis in the space of polynomials with pure
ghost number I in the corresponding ghosts and their an-
tisymmetrized first-order derivatives. The objects αI have
the pure ghost number equal to zero and are required to
fulfill the property agh (αI) = I in order to ensure that
the ghost number of aI is equal to zero. Since they have
a bounded number of derivatives and a finite antighost
number, αI are actually polynomials in the linearized Rie-
mann tensor, in the antifields, in all of their derivatives,
as well as in the derivatives of the Rarita–Schwinger fields.
The anticommuting behaviour of the vector-spinors in-
duces that αI are also polynomials in the undifferentiated
Rarita–Schwinger fields, so we conclude that these elem-
ents exhibit a polynomial character in all of their argu-
ments. Due to their γ-closeness, γαI = 0, αI will be called
invariant polynomials. In zero antighost number the invari-
ant polynomials are polynomials in the linearized Riemann
tensor Kµναβ , in the Rarita–Schwinger spinors, as well as
in their derivatives.
Inserting (35) in (31), we obtain that a necessary (but

not sufficient) condition for the existence of (non-trivial)
solutions aI−1 is that the invariant polynomials αI are
(non-trivial) objects from the local cohomology of the
Koszul–Tate differentialH (δ|d) in pure ghost number zero
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and in strictly positive antighost numbers I > 0

δαI = ∂µ
(I−1)

j

µ

, agh

(
(I−1)

j

µ
)

= I−1 ,

pgh

(
(I−1)

j

µ
)

= 0 . (36)

We recall that H (δ|d) is completely trivial in both strictly
positive antighost and pure ghost numbers (for instance,
see [23], Theorem 5.4 and [26]). Using the fact that the
Cauchy order of the free theory under study is equal to two
together with the general results from [23], according to
which the local cohomology of the Koszul–Tate differential
in pure ghost number zero is trivial in antighost numbers
strictly greater than its Cauchy order, we can state that

HJ (δ|d) = 0 for all J > 2 , (37)

where HJ (δ|d) represents the local cohomology of the
Koszul–Tate differential in zero pure ghost number and in
antighost number J . An interesting property of invariant
polynomials for the free model under study is that if an
invariant polynomial αJ , with agh (αJ) = J ≥ 2, is triv-
ial in HJ (δ|d), then it can be taken to be trivial also in
H invJ (δ|d), i.e.

(
αJ = δbJ+1+∂µ

(J)
c
µ

, agh (αJ) = J ≥ 2

)

⇒ αJ = δβJ+1+∂µ
(J)
γ
µ

, (38)

with both βJ+1 and
(J)
γ
µ

invariant polynomials. Here,
H invJ (δ|d) denotes the invariant characteristic cohomology
(the local cohomology of the Koszul–Tate differential in
the space of invariant polynomials) in antighost number J .
This property is proved in [16] in the case of a collection of
Pauli–Fierz fields and remains valid in the case considered
here, since the matter fields do not carry gauge symme-
tries. Thus, we can write that

H invJ (δ|d) = 0 for all J > 2 . (39)

For the same reason, the antifields of the matter fields can
bring only trivial contributions to HJ (δ|d) and H invJ (δ|d)
for J ≥ 2, so the results from [16] concerning bothH2 (δ|d)
in pure ghost number zero and H inv2 (δ|d) remain valid.
These cohomological spaces are still spanned by the undif-
ferentiated antifields corresponding to the ghosts

H2 (δ|d) andH
inv
2 (δ|d) : (η

∗µ) . (40)

In contrast to the groups (HJ (δ|d))J≥2 and(
H invJ (δ|d)

)
J≥2
, which are finite-dimensional, the cohomo-

logy H1 (δ|d) in pure ghost number zero, known to be
related to global symmetries and ordinary conservation
laws, is infinite-dimensional, since the theory is free. More-
over, H1 (δ|d) non-trivially involves the antifields of the
matter fields.

The previous results on H (δ|d) and H inv (δ|d) in
strictly positive antighost numbers are important because
they control the obstructions to removing the antifields
from the first-order deformation. More precisely, based on
the formulas (36)–(39), one can successively eliminate all
the pieces of antighost number strictly greater that two
from the non-integrated density of the first-order defor-
mation by adding only trivial terms. Thus, one can take,
without loss of non-trivial objects, the condition I ≤ 2 in
the decomposition (29). In addition, the last representative
is of the form (35), where the invariant polynomial is nec-
essarily a non-trivial object from H inv2 (δ|d) for I = 2, and
fromH1 (δ|d) for I = 1, respectively.

4.2 First-order deformation

In the case I = 2, the non-integrated density of the first-
order deformation (29) becomes

a= a0+a1+a2 . (41)

We can further decompose a in a natural manner as a sum
between three kinds of deformations

a= a(PF)+a(int)+a(RS) , (42)

where a(PF) contains only fields/ghosts/antifields from the
Pauli–Fierz sector, a(int) describes the cross-interactions
between the two theories (so it effectively mixes both sec-
tors), and a(RS) involves only the Rarita–Schwinger sector.
The component a(PF) is completely known (for a detailed
analysis see [16]) and satisfies individually an equation of
the type (27). It admits a decomposition similar to (41)

a(PF) = a
(PF)
0 +a

(PF)
1 +a

(PF)
2 , (43)

where

a
(PF)
2 =

1

2
η∗µην∂[µ ην] , (44)

a
(PF)
1 = h∗µρ

(
(∂ρη

ν)hµν −η
ν∂[µhν]ρ

)
, (45)

and a
(PF)
0 is the cubic vertex of the Einstein–Hilbert La-

grangian plus a cosmological term2. Due to the fact that
a(int) and a(RS) involve different kinds of fields, it follows
that a(int) and a(RS) are subject to some separate equations

sa(int) = ∂µm
(int)µ , (46)

sa(RS) = ∂µm
(RS)µ , (47)

2 The terms a
(PF)
2 and a

(PF)
1 given in (44) and (45) differ

from the corresponding ones in [16] by a γ-exact and a δ-exact
contribution, respectively. However, the difference between our

a
(PF)
2 + a

(PF)
1 and the corresponding sum from [16] is an s-exact

modulo d quantity. The associated component of antighost

number zero, a
(PF)
0 , is nevertheless the same in both formula-

tions. As a consequence, the object a(PF) and the first-order
deformation in [16] belong to the same cohomological class from
H0 (s|d).
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for some local mµ’s. In the following, we analyze the gen-
eral solutions to these equations.
Since the massive Rarita–Schwinger field does not carry

gauge symmetries of its own, the massive gravitino sector
can only occur in antighost number one and zero. Thus,
without loss of generality, we can take

a(int) = a
(int)
0 +a

(int)
1 (48)

in (46), where the components involved in the right-hand
side of (48) are subject to the equations

γa
(int)
1 = 0 , (49)

δa
(int)
1 +γa

(int)
0 = ∂µ

(0)
m
(int)µ

. (50)

According to (35) in pure ghost number one and because
ω1 is spanned by

ω1 =
(
ηµ, ∂[µην]

)
,

we infer that the most general expression of a
(int)
1 as solu-

tion to (49) is3

a
(int)
1 = ψ∗µ

(
Nρµηρ+N

ρλ
µ∂[ρηλ]

)
, (51)

where Nρµ and N
ρλ
µ are real, odd spinor-like functions,

with Nρλµ antisymmetric in its upper indices. All the ob-
jects denoted by N are gauge-invariant, so they may de-
pend on ψµ, Kµνρλ, and their spacetime derivatives. At
this stage we recall the hypothesis on the conservation of
the number of derivatives on each field, which allows us to
simplify the solution (51) to (49) by imposing that the fol-
lowing requirements are simultaneously satisfied:
i) the interaction vertices present in a

(int)
0 as solution

to (50), assuming a
(int)
0 exists, contain at most two deriva-

tives of the fields;
ii) the deformed field equations associated with a

(int)
0

involve at most the first-order derivatives of the spinor
fields and at most the second-order derivatives of the
Pauli–Fierz field.
By applying the differential δ on (51) and using the def-

initions (12)–(16), we infer that

δa
(int)
1 = ∂µm

µ+γb0+ c0 , (52)

3 We remark that, in principle, we might have added to a
(int)
1

a component ã
(int)
1 linear in the antifield of the Pauli–Fierz

field, h∗µν . However, such terms cannot produce a consistent
component of the first-order deformation in antighost number
zero, as is shown in Appendix B.

where

mµ =−iψ̄βγ
µβν
(
Nρνηρ+N

ρλ
µ∂[ρηλ]

)
, (53)

b0 =
i

2
ψ̄βγ

αβµ
(
Nρµhαρ+2N

ρλ
µ∂[ρhλ]α

)
, (54)

c0 =
(
mψ̄αγ

αµNρµ+iψ̄βγ
αβµ∂αN

ρ
µ

)
ηρ

+

(
mψ̄αγ

αµNρλµ+iψ̄βγ
αβµ∂αN

ρλ
µ

+
i

2
ψ̄βγ

ρβµNλµ

)
∂[ρηλ] . (55)

Taking into account the previous two requirements on the
derivative behaviour of a

(int)
0 , from (54) we get that the

spinor-tensor Nρµ may contain at most one derivative of
the spinor ψµ, while the spinor-tensor N

ρλ
µ can only de-

pend on the undifferentiated Rarita–Schwinger field. As
a consequence, we have that

Nρµ = N̄
ρλ
µψλ+ N̄

ρλσ
µ∂λψσ, N

ρλ
µ =N

ρλσ
µψσ , (56)

and hence

a
(int)
1 = ψ∗µ

(
N̄ρλµψλ+ N̄

ρλσ
µ∂λψσ

)
ηρ

+ψ∗µNρλσµψσ∂[ρηλ] , (57)

where N̄ρλµ, N̄
ρλσ
µ, andN

ρλσ
µ are real, bosonic 4×4 matri-

ces that may depend only on the undifferentiated spinor-
vector ψµ. Inserting (56) in (54)–(55), we get

b0 =
i

2
ψ̄βγ

αβµ
((
N̄ρλµψλ+ N̄

ρλσ
µ∂λψσ

)
hαρ

+2Nρλσµψσ∂[ρhλ]α
)
, (58)

c0 =
(
mψ̄αγ

αµ
(
N̄ρλµψλ+ N̄

ρλσ
µ∂λψσ

)

+iψ̄βγ
αβµ∂α

(
N̄ρλµψλ+ N̄

ρλσ
µ∂λψσ

))
ηρ

+

(
mψ̄αγ

αµNρλσµψσ+iψ̄βγ
αβµ∂α

(
Nρλσµψσ

)

+
i

2
ψ̄βγ

ρβµ
(
N̄λσµψσ+ N̄

λασ
µ∂αψσ

)
)
∂[ρηλ] . (59)

The condition that δa
(int)
1 should be written like in (50) re-

stricts c0 expressed in (59) to be a γ-exact modulo d quan-
tity, i.e.

c0 = γm+∂µn
µ . (60)

At this stage it is useful to split c0 as follows:

c0 =
2∑

k=0

(c0)k , (61)

where (c0)k denotes the piece from c0 with k-derivatives.
According to this decomposition, it follows that each
(c0)k should be written in a γ-exact modulo d form, such
that (50) is indeed satisfied. Using (59), we obtain that

(c0)0 =mψ̄αγ
αµN̄ρλµψληρ . (62)
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As the right-hand side of (62) is derivative-free, it follows
that these terms neither reduce to a total derivative nor
can they be expressed in a γ-exact form, so they must
vanish

ψ̄αγ
αµN̄ρλµψλ = 0 . (63)

Simple computation exhibits that (63) is checked if

γ0γαµN̄ρλµ =
(
γ0γλµN̄ραµ

)ᵀ
, (64)

whose general solution is expressed by

N̄ρλµ = c1δ
ρ
µγ
λ+ c2δ

λ
µγ
ρ+ c3σ

ρλγµ

+
1

2
(c1+2c2+3c3) γ

ρλ
µ , (65)

with c1, c2, and c3 being some arbitrary functions depend-
ing on ψµ. As is shown in Appendix B, the functions c1,
c2, and c3 from (65) can be made to vanish by adding some
trivial, s-exact terms and by conveniently redefining the
functions N̄ρλσµ. Consequently, we can take

N̄ρλµ = 0 . (66)

The equation (60) for k = 1 becomes

mψ̄αγ
αµN̄ρλσµ (∂λψσ) ηρ+mψ̄αγ

αµNρλσµψσ∂[ρηλ]

= γm0+∂µn
µ
0 , (67)

where γm0 = (∂m0/∂hρλ) ∂(ρ ηλ). By taking the Euler–
Lagrange derivatives of the relation (67) with respect to ην ,
we obtain that the quantity mψ̄αγ

αµN̄ρλσµ (∂λψσ) should
reduce to a total derivative

mψ̄αγ
αµN̄ρλσµ (∂λψσ) = ∂λM

ρλ . (68)

The left-hand side of (68) is a full divergence if the follow-
ing conditions

∂λN̄
ρλσ
µ = 0, (69)

γ0γαµN̄ρλσµ =−
(
γ0γσµN̄ρλαµ

)ᵀ
(70)

are simultaneously satisfied. The general solution to (69)–
(70) takes the form

N̄ρλσµ = k1

(
σλσ
(
δρµ+

1

2
γρµ

)
+σρσ

(
δλµ+

1

2
γλµ

))

+k2σ
ρλ

(
δσµ+

1

2
γσµ

)
+k4σ

ρλδσµ

+k3

(
σλσδρµ−σ

ρσδλµ− δ
σ
µγ
ρλ+γρλσµ

−
1

2

(
δλµγ

ρσ− δρµγ
λσ
)
+
1

2

(
σσλγρµ−σ

ρσγλµ
)
)

= N̄ρλσ1 µ+ N̄
ρλσ
2 µ , (71)

with

N̄ρλσ1 µ = k1

(
σλσ
(
δρµ+

1

2
γρµ

)
+σρσ

(
δλµ+

1

2
γλµ

))

+k2σ
ρλ

(
δσµ+

1

2
γσµ

)
+k4σ

ρλδσµ , (72)

and (ki)i=1,4 being some arbitrary constants. Under these
circumstances (if (69)–(70) are verified), we find that

mψ̄αγ
αµN̄ρλσµ (∂λψσ) ηρ+mψ̄αγ

αµNρλσµψσ∂[ρηλ]

= γ

(
−
1

4
mψ̄αγ

αµN̄ρλσ1 µψσhρλ

)

+∂λ

(
1

2
mψ̄αγ

αµN̄ρλσµψσηρ

)

+mψ̄αγ
αµ

(
Nρλσµ+

1

4
N̄ρλσ2 µ

)
ψσ∂[ρηλ] . (73)

By comparing the last equation to (67), we observe that the
last term from the right-hand side of (73) must be γ-exact
modulo d. This takes place if

ψ̄αγ
αµ

(
Nρλσµ+

1

4
N̄ρλσ2 µ

)
ψσ = 0, (74)

from which we further deduce

Nρλσµ =−
1

4
N̄ρλσ2 µ+ N̂

ρλσ
µ , (75)

where N̂ρλσµ is solution to the equation

ψ̄αγ
αµN̂ρλσµψσ = 0 . (76)

It is simple to see that (76) holds if

γ0γαµN̂ρλσµ =
(
γ0γσµN̂ρλαµ

)ᵀ
, (77)

whose general solution is given by

N̂ρλσµ = k̄1
(
σλσδρµ−σ

ρσδλµ
)
+ k̄2δ

σ
µγ
ρλ

+ k̄3
(
δλµγ

ρσ− δρµγ
λσ
)
+ k̄4γ

ρλσ
µ

+
1

2

(
k̄1−2k̄2+ k̄4

) (
σσλγρµ−σ

ρσγλµ
)
, (78)

with
(
k̄i
)
i=1,4

being some arbitrary functions depending
on ψµ.
Next, we analyze the solution to (60) for k = 2. It takes

the concrete form

i

2
ψ̄β
(
γαβµN̄ρλσµ+γ

λβµN̄ρασµ
)
(∂α∂λψσ) ηρ

+iψ̄βγ
αβµ∂α

(
Nρλσµψσ

)
∂[ρηλ]

+
i

2
ψ̄βγ

ρβµN̄λασµ (∂αψσ) ∂[ρηλ]

= γm1+∂µn
µ
1 , (79)

with N̄ρλσµ andN
ρλσ
µ determined previously. By taking the

Euler–Lagrange derivatives of (79) with respect to ην and
by using the result that γm1 = (δm1/δhρλ) ∂(ρ ηλ)+∂λv

λ,
with δm1/δhρλ being the variational derivative ofm1 with
respect to hρλ, it follows that

i

2
ψ̄β
(
γαβµN̄ρλσµ+γ

λβµN̄ρασµ
)
(∂α∂λψσ) = ∂λP

ρλ , (80)
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for some P ρλ. The left-hand side of the last equation is
written as a full divergence if

(
∂λψ̄β

) (
γαβµN̄ρλσµ+γ

λβµN̄ρασµ
)
(∂αψσ) = 0 , (81)

which further produces

k1 = k2 = k3 = 0 , (82)

such that we have

i

2
ψ̄β
(
γαβµN̄ρλσµ+γ

λβµN̄ρασµ
)
(∂α∂λψσ) ηρ

=−
ik4
4
γ
(
ψ̄β
(
γαβσ (∂αψσ)h+γ

λβσ (∂ρψσ)hλρ
))

+
ik4
8
ψ̄β
(
σαργλβσ−σαλγρβσ

)
(∂αψσ) ∂[ρηλ]+∂λu

λ .

(83)

On the other hand, it is easy to see that

iψ̄βγ
αβµ∂α

(
Nρλσµψσ

)
∂[ρηλ]

=−γ
(
iψ̄βγ

αβµN̂ρλσµψσ∂[ρhλ]α

)
+∂λū

λ

− i
(
∂αψ̄β

)
γαβµN̂ρλσµψσ∂[ρηλ] . (84)

Inserting (83)–(84) in (79) and taking into account the re-
sult (82), (79) reduces to

− i
(
∂αψ̄β

)
γαβµN̂ρλσµψσ∂[ρηλ]

−
ik4
8
ψ̄β
(
σαργλβσ−σαλγρβσ

)
(∂αψσ) ∂[ρηλ]

= γm̄1+∂µn̄
µ
1 . (85)

Now, we decompose γαβµN̂ρλσµ as follows:

γαβµN̂ρλσµ =
(
γαβµN̂ρλσµ

)

1
+
(
γαβµN̂ρλσµ

)

2
, (86)

with

(
γαβµN̂ρλσµ

)

1
=
1

2

(
1

2
k̄1+ k̄2−2k̄3−

1

2
k̄4

)

×
(
σλσγαβρ+σλβγασρ−σρσγαβλ

−σρβγασλ
)

+ k̄3
(
2σσβγραλ−σσαγρβλ−σβαγρσλ

)

+
(
k̄1− k̄2+ k̄3+ k̄4

) (
σσρσλβ−σσλσρβ

)

×γα+
1

2

(
k̄1+ k̄3

) ((
σσλσαρ−σσρσλα

)

×γβ +
(
σβρσαλ−σβλσαρ

)
γσ
)

+
1

2

(
k̄3+ k̄4

) ((
σβρσασ

−σσρσαβ
)
γλ+

(
σσλσαβ−σβλσασ

)
γρ
)
,

(87)

(
γαβµN̂ρλσµ

)

2
=
1

2

(
1

2
k̄1− k̄2−

1

2
k̄4

)

×
(
σλσγαβρ−σλβγασρ−σρσγαβλ

+σρβγασλ
)
+
(
k̄2− k̄3

)

×
(
σραγβσλ−σλαγβσρ

)

+ k̄3
(
σβαγρσλ−σσαγρβλ

)

+
1

2

(
k̄1−2k̄2+ k̄3+2k̄4

) ((
σσλσαρ

−σσρσλα
)
γβ+

(
σβλσαρ−σβρσαλ

)
γσ
)

+
1

2

(
k̄3+ k̄4

) (
2σβσ

(
σαλγρ−σαργλ

)

+
(
σβρσασ+σσρσαβ

)
γλ

−
(
σασσβλ+σαβσσλ

)
γρ
)
. (88)

By direct computation it can be shown that the two com-
ponents of γαβµN̂ρλσµ satisfy the properties

γ0
(
γαβµN̂ρλσµ

)

1
=−
(
γ0
(
γασµN̂ρλβµ

)

1

)ᵀ
, (89)

γ0
(
γαβµN̂ρλσµ

)

2
=
(
γ0
(
γασµN̂ρλβµ

)

2

)ᵀ
. (90)

By means of the formulas (89)–(90) we can write

− i
(
∂αψ̄β

)
γαβµN̂ρλσµψσ∂[ρηλ]

= γ

(
i

2
ψ̄β

(
γαβµN̂ρλσµ

)

1
ψσ∂[ρhλ]α

)

+iψ̄β
(
γαβµN̂ρλσµ

)

2
(∂αψσ) ∂[ρηλ]

+∂α

(
−
i

2
ψ̄β

(
γαβµN̂ρλσµ

)

1
ψσ∂[ρηλ]

)
, (91)

such that

− i
(
∂αψ̄β

)
γαβµN̂ρλσµψσ∂[ρηλ]

−
ik4
8
ψ̄β
(
γλβσσαρ−γρβσσαλ

)
(∂αψσ) ∂[ρηλ]

= γ

(
i

2
ψ̄β

(
γαβµN̂ρλσµ

)

1
ψσ∂[ρhλ]α

)

+∂α

(
−
i

2
ψ̄β

(
γαβµN̂ρλσµ

)

1
ψσ∂[ρηλ]

)

− iψ̄β

(
k4

8

(
σαργλβσ−σαλγρβσ

)

−
(
γαβµN̂ρλσµ

)

2

)
(∂αψσ) ∂[ρηλ] . (92)

A comparison of (92) with (85) results in that the last term
in (92) has to be γ-exact modulo d. This holds if

iψ̄β

((
k4

8

(
σαργλβσ−σαλγρβσ

)

−

(
γαβµN̂ρλσµ

)

2

)
(∂αψσ)

)
= ∂αθ

α (93)
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for some θα or, in other words, if

Mαβρλσ = γ0
(
k4

8

(
σαργλβσ−σαλγρβσ

)
−
(
γαβµN̂ρλσµ

)

2

)

(94)

fulfills the condition

Mαβρλσ =−
(
Mασρλβ

)ᵀ
. (95)

With the help of (90) we obtain the relations

Mαβρλσ =
(
Mασρλβ

)ᵀ
, (96)

which indicate that (95) cannot be satisfied, and hence nei-
ther can (93). As a consequence, the term −iψ̄βMαβρλσ

(∂αψσ) ∂[ρηλ] from (92) must be canceled, which implies

Mαβρλσ = 0 . (97)

The solution to the above equation reads as

k̄1 =
1

4
k4 , k̄2 =

1

8
k4 , k̄3 = 0 , k̄4 = 0 . (98)

Redenoting k4 by k, we finally find the relations

N̄ρλσµ = kσ
ρλδσµ , N

ρλσ
µ = N̂

ρλσ
µ

=
1

4
k

(
σλσδρµ−σ

ρσδλµ+
1

2
δσµγ

ρλ

)
. (99)

Replacing (66) and (99) in (57), we obtain that

a
(int)
1 = kψ∗µ (∂νψµ) ην +

k

2
ψ∗µψν∂[µην]

+
k

8
ψ∗ργµνψρ∂[µην] . (100)

Meanwhile, if we insert (99) in (58), (73), (83)–(84),
and (92) and the resulting expressions in (52), we deduce
that the component of antighost number zero from the
first-order deformation is given by

a
(int)
0 =

k

2

(
σρλL(RS)0 −

i

2
ψ̄µγ

µνρ∂λψν

)
hρλ

+
ik

4

(
1

2
ψ̄µγρψν +σµρψ̄νγσψσ+ ψ̄σγ

σρµψν
)

×∂[µhν]ρ+ ā
(int)
0 , (101)

where ā
(int)
0 represents the general, local solution to the ho-

mogeneous equation

γā
(int)
0 = ∂µm̄

(int)µ , (102)

with some local m̄(int)µ.
Such solutions correspond to ā

(int)
1 = 0 and thus they

cannot deform either the gauge algebra or the gauge trans-
formations, but simply the Lagrangian at order one in
the coupling constant. There are two main types of so-
lutions to (102). The first one corresponds to m̄(int)µ = 0

and is given by gauge-invariant, non-integrated densities
constructed from the original fields and their spacetime
derivatives. According to (35) for both pure ghost and anti-

ghost numbers equal to zero, they are given by ā
′(int)
0 =

ā
′(int)
0 ([ψµ] , [Kµναβ ]), up to the conditions that they ef-
fectively describe cross-couplings between the two types
of fields and cannot be written in a divergence-like form.
Unfortunately, this type of solution must depend on the
linearized Riemann tensor (and possibly on its derivatives)
in order to provide cross-couplings, and thus would lead to
terms with at least two derivatives of the Rarita–Schwinger
spinors in the deformed field equations. Thus, by virtue of
the derivative order assumption, they must be discarded by
setting ā

′(int)
0 = 0. The second kind of solution is associated

with m̄(int)µ �= 0 in (102) and will be approached below.
We split the solution to (102) for m̄(int)µ �= 0 along the

number of derivatives present in the interaction vertices

ā
(int)
0 =

2∑

i=0

(i)
ω , (103)

where
(i)
ω contains i derivatives of the fields. The decompos-

ition (103) yields a similar splitting with respect to (102),
which becomes equivalent to three independent equations

γ
(i)
ω = ∂µ

(i)
mµ , i= 0, 2 . (104)

Let us solve (104) for i= 0. With the help of the defini-
tions of γ acting on the generators from the BRST complex
we obtain

γ
(0)
ω =−2

⎛

⎝∂ν
∂
(0)
ω

∂hµν

⎞

⎠ ηµ+∂µπµ . (105)

Thus,
(0)
ω is the solution to (104) for i= 0 if and only if

∂ν
∂
(0)
ω

∂hµν
= 0 . (106)

Since
(0)
ω has no derivatives, (106) implies that ∂

(0)
ω /∂hρµ

must be constant. As the only constant and symmetric ten-
sor in four spacetime dimensions is the flat metric, we can
write

∂
(0)
ω

∂hµν
= pσµν , (107)

with p being a real constant. Integrating (107) results in
that the solution to (104) for i= 0 reads as

(0)
ω = ph+F (ψµ) ,

but since it provides no cross-interactions, we can take

(0)
ω = 0 . (108)
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Next, we pass to (104) for i= 1. We obtain that

γ
(1)
ω =−2

⎛

⎝∂ν
δ
(1)
ω

δhµν

⎞

⎠ ηµ+∂µβµ , (109)

so
(1)
ω checks (104) for i= 1 is and only if

∂ν
δ
(1)
ω

δhµν
= 0 . (110)

Because
(1)
ω includes just one spacetime derivative, the so-

lution to (110) is

δ
(1)
ω

δhµν
= ∂ρD

ρµν , (111)

whereDρµν depends only on the undifferentiated fields and
is antisymmetric in its first two indices

Dρµν =−Dµρν . (112)

Since Dρµν is derivative-free and hµν is symmetric, (111)
implies thatDρµν must be symmetric in its last two indices

Dρµν =Dρνµ . (113)

The properties (112) and (113) further lead to

Dρµν =−Dµρν =−Dµνρ =Dνµρ

=Dνρµ =−Dρνµ =−Dρµν , (114)

soDρµν = 0. Consequently, (111) reduces to

δ
(1)
ω

δhµν
= 0 , (115)

whose solution is expressed by

(1)
ω = L ([ψµ])+∂µG

µ (ψµ , hαβ) (116)

and is not suitable as the first term provides no cross-
interactions, while the second is trivial, so we have that

(1)
ω = 0 . (117)

In the end, we solve (104) for i= 2. From the relation

γ
(2)
ω =−2

⎛

⎝∂ν
δ
(2)
ω

δhµν

⎞

⎠ ηµ+∂µξµ , (118)

we observe that
(2)
ω verifies (104) for i= 2 if and only if

∂ν
δ
(2)
ω

δhµν
= 0 . (119)

The solution to the last equation reads as

δ
(2)
ω

δhµν
= ∂α∂βU

µανβ , (120)

where Uµανβ displays the symmetry properties of the Rie-
mann tensor and involves only the undifferentiated fields
ψµ and hµν . At this stage it is useful to introduce a deriva-
tion in the algebra of the fields hµν and of their derivatives
that counts the powers of the fields and their derivatives,
defined by

N =
∑

k≥0

(
∂µ1···µkhµν

) ∂

∂
(
∂µ1···µkhµν

) . (121)

Then, it is easy to see that for every non-integrated density
χ, we have that

Nχ= hµν
δχ

δhµν
+∂µs

µ . (122)

If χ(l) is a homogeneous polynomial of order l > 0 in the
fields and their derivatives, thenNχ(l) = lχ(l). Using (120),
and (122), we find that

N
(2)
ω =−

1

2
KµανβU

µανβ+∂µv
µ . (123)

We expand
(2)
ω as follows:

(2)
ω =

∑

l>0

(2)
ω
(l)

, (124)

whereN
(2)
ω
(l)

= l
(2)
ω
(l)

, such that

N
(2)
ω =

∑

l>0

l
(2)
ω
(l)

. (125)

Comparing (123) with (125), we reach the conclusion that
the decomposition (124) induces a similar decomposition
with respect to Uµανβ , i.e.

Uµανβ =
∑

l>0

Uµανβ(l−1) . (126)

Substituting (126) into (123) and comparing the resulting
expression with (125), we obtain that

(2)
ω
(l)

=−
1

2l
KµανβU

µανβ
(l−1) +∂µv̄

µ
(l) . (127)

Introducing (127) in (124), we arrive at

(2)
ω =−

1

2
KµανβŪ

µανβ+∂µv̄
µ , (128)

where

Ūµανβ =
∑

l>0

1

l
Uµανβ(l−1) . (129)
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Even if consistent, an
(2)
ω of the type (128) would produce

field equations with two spacetime derivatives acting on
the Rarita–Schwinger spinors, which breaks the hypothesis
on the derivative order of the interacting theory. Thus, we
must take

(2)
ω = 0 . (130)

The results (108), (117), and (130) enable us to take, with-
out loss of generality,

ā
(int)
0 = 0 (131)

in (101).
Finally, we analyze the component a(RS) from (42). As

the massive Rarita–Schwinger action from (1) has no non-
trivial gauge invariance, it follows that a(RS) can only re-
duce to its component of antighost number zero

a(RS) = a
(RS)
0 ([ψµ]) , (132)

which is automatically solution to the equation sa(RS) ≡
γa
(RS)
0 = 0. It comes from a

(RS)
1 = 0 and does not de-

form the gauge transformations (9), but merely modifies

the massive spin-3/2 action. The condition that a
(RS)
0 is

of maximum derivative order equal to one is translated
into

a
(RS)
0 = V (ψµ)+V

αβ (ψµ) ∂αψβ , (133)

where V and V αβ are polynomials in the undifferentiated
spinor fields (since they anticommute). The first poly-
nomial is a scalar (bosonic and real), while the tensor V αβ

is fermionic and anti-Majorana spinor-like.
The general conclusion of this subsection is that the

first-order deformation associated with the Pauli–Field
theory plus the massive Rarita–Schwinger field can be
written as follows:

S1 = S
(PF)
1 +S

(int)
1 , (134)

with

S
(PF)
1 =

∫
d4x
(
a
(PF)
0 +a

(PF)
1 +a

(PF)
2

)
, (135)

and

S
(int)
1 =

∫
d4x
(
a
(int)
0 +a

(int)
1 +a

(RS)
0

)
. (136)

The first two components of (136) are expressed by (100)

and (101) with ā
(int)
0 = 0, while a

(RS)
0 is given by (133).

This is the most general form that complies with all the
hypotheses that must be satisfied by the deformations, in-
cluding that related to the derivative order of the deformed
Lagrangian.

4.3 Second-order deformation

In this subsection we are interested in determining the
complete expression of the second-order deformation for
the solution to the master equation, which is known to be
subject to (25). Proceeding in the same manner as dur-
ing the first-order deformation procedure, we can write
the second-order deformation of the solution to the mas-
ter equation like the sum between the Pauli–Fierz and the
interacting parts

S2 = S
(PF)
2 +S

(int)
2 . (137)

The piece S
(PF)
2 describes the second-order deformation in

the Pauli–Fierz sector and we will not insist on it, since
we are merely interested in the cross-couplings. The term
S
(int)
2 results as the solution to the equation

1

2
(S1 , S1)

(int)
+ sS

(int)
2 = 0 , (138)

where

(S1 , S1)
(int)
=
(
S
(int)
1 , S

(int)
1

)
+2
(
S
(PF)
1 , S

(int)
1

)
(139)

and S
(int)
1 is presented in (136). If we denote by ∆(int) and

b(int) the non-integrated densities of (S1 , S1)
(int)

and of

S
(int)
2 , respectively, the local form of (138) becomes

∆(int) =−2sb(int)+∂µn
µ , (140)

with

gh
(
∆(int)

)
= 1, gh

(
b(int)

)
= 0 ,

gh (nµ) = 1 , (141)

for some local current nµ. Direct computation shows that
∆(int) decomposes like

∆(int) =∆
(int)
0 +∆

(int)
1 , agh

(
∆
(int)
I

)
= I ,

I = 0 , 1 , (142)

with

∆
(int)
1 = γ

(
k

(
−
1

4

(
ψ∗[µψσ]+

1

2
ψ∗ργµσψρ

)
∂[σηλ]σ

νλ

.+kψ∗σ
(
∂µψσ

)
ην
)
hµν

+
k (2−k)

2

(
ψ∗µψν +

1

4
ψ∗σγµνψσ

)
ηρ∂[µhν]ρ

)

+k (1−k)

(
ψ∗µ (∂νψµ) η

ρ∂[νηρ]+
1

4

(
ψ∗[µψν]

+
1

2
ψ∗σγµνψσ

)
∂[µηρ]∂[νηλ]σ

ρλ

)
, (143)
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and

∆
(int)
0 = γ

(
k

4
L(RS)0 hµνh

µν

)

+k

(
−L

(RS)
0 ηµ+

ik

2
ησ∂

σ
(
ψ̄µγρψρ

)

+
ik

4
ψ̄µγρψσ∂[ρησ]+

ik

4
ψ̄σγ

ρψρ∂
[µησ]

+
ik

16
ψ̄µ
[
γρ , γαβ

]
ψρ∂[αηβ]

)
(∂νhµν −∂µh)

+
ik2

4

(
ησ∂

σ
(
ψ̄µγαψν −2ψ̄βγ

αβµψν
)

+ ψ̄µγαψσ∂
[νησ]

− ψ̄βγ
αβµψσ∂

[νησ]− ψ̄σγαβµψν∂[βησ]

+

(
1

8
ψ̄µ
[
γα , γρλ

]
ψν −

1

4
ψ̄β
[
γαβµ , γρλ

]
ψν
)

×∂[ρηλ]

)
∂[µhν]α

+k2
(
ησ∂

σL(RS)0 −
i

2
ψ̄µγ

µνρ (∂σψρ) ∂νησ

+
m

2
ψ̄µγ

µνψσ∂[νησ]

−
i

2
ψ̄µγ

µνρ∂ν
(
ψσ∂[ρησ]

)
−
i

2
ψ̄σγµνρ (∂νψρ) ∂[µησ]

+
m

16

(
ψ̄µ
[
γµν , γαβ

]
ψν

−iψ̄µ
[
γµνρ , γαβ

]
∂νψρ

)
∂[αηβ]

−
i

16
ψ̄µγ

µνργαβψρ∂ν
(
∂[αηβ]

))
h

−
ik2

2

(
ησ∂

σ
(
ψ̄µγ

µνρ∂λψν
)

+ ψ̄µγ
µνρ (∂σψν) ∂

λησ+
1

2
ψ̄µγ

µνρ
(
∂λψσ∂[νησ]

)

+
1

2
ψ̄σγµνρ

(
∂λψν

)
∂[µησ]

+
1

8
ψ̄µ
[
γµνρ , γαβ

] (
∂λψν

)
∂[αηβ]

+
1

8
ψ̄µγ

µνργαβψν∂
λ
(
∂[αηβ]

)
)
hρλ

−
ik

4
ψ̄µγ

µν(ρ∂λ)ψν

× (hλσ∂ρη
σ−ησ (∂ρhλσ−∂σhρλ))+

ik

4
ψ̄µγ(ρψλ)

×∂µ (hλσ∂ρη
σ−ησ (∂ρhλσ−∂σhρλ))+

ik

4
ψ̄µγρψρ

×∂ν
(
hσ(µ∂ν)η

σ−ησ
(
∂(µhν)σ−2∂σhµν

))

−
ik

2
ψ̄µγρψρ

×∂µ
(
hαβ∂αηβ−η

α
(
∂βhαβ−∂αh

))

−
ik

4
ψ̄µγ

µν(ρψλ)×

×∂ν (hλσ∂ρη
σ−ησ (∂ρhλσ−∂σhρλ))

+2k
(
∂µV +V αβ∂αψβ

)
ηµ+2kV

µν (∂σψν) ∂µησ

+k
∂RV

∂ψµ
ψν∂[µην]

+kV µν∂µ
(
ψσ∂[νησ]

)
+kψ̄σ

∂LV µν

∂ψ̄ρ
(∂µψν) ∂[ρησ]

+
k

4

(
∂RV

∂ψρ
γαβψρ− ψ̄ργ

αβ ∂
LV µν

∂ψ̄ρ
∂µψν

)
∂[αηβ]

+
k

4
V µνγαβ∂µ

(
ψν∂[αηβ]

)
. (144)

Since the first-order deformation in the interacting sec-
tor starts in antighost number one, we can take, without
loss of generality, the corresponding second-order deforma-
tion to start in antighost number two

b(int) = b
(int)
0 + b

(int)
1 + b

(int)
2 ,

agh
(
b
(int)
I

)
= I, I = 0 , 1, 2, (145)

nµ = nµ0 +n
µ
1 +n

µ
2 , agh (n

µ
I ) = I ,

I = 0 , 1, 2 . (146)

By projecting (140) on various antighost numbers, we ob-
tain

γb
(int)
2 = ∂µ

(
1

2
nµ2

)
, (147)

∆
(int)
1 =−2

(
δb
(int)
2 +γb

(int)
1

)
+∂µn

µ
1 , (148)

∆
(int)
0 =−2

(
δb
(int)
1 +γb

(int)
0

)
+∂µn

µ
0 . (149)

Equation (147) can always be replaced, by adding trivial
terms, with

γb
(int)
2 = 0 . (150)

Looking at ∆
(int)
1 given in (143), results in that it can be

written like in (148) if

χ= k (1−k)

(
ψ∗µ (∂νψµ) η

ρ∂[νηρ]+
1

4

(
ψ∗[µψν]

+
1

2
ψ∗σγµνψσ

)
∂[µηρ]∂[νηλ]σ

ρλ

)

(151)

can be expressed like

χ= δϕ+γω+∂αl
α . (152)

Supposing that (152) holds and applying δ on it, we infer
that

δχ= γ (−δω)+∂α (δl
α) . (153)
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On the other hand, using the concrete expression of χ, we
have that

δχ= γ

(
k(1−k)

2
δ (ψ∗ρψρην (∂µh

µν −∂νh))

)

+∂µ
(
1

2
k(1−k)δ

(
ψ∗ρψρη

ν∂[µην]
)
)

+γ

(
i

4
k(1−k)

((
ψ̄βγ

αβσ (∂µψσ) h
ρ
α−
(
ψ̄βγ

αβ[µψν]

−ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
σρλ∂[νhλ]α

)
∂[µηρ]

−2ψ̄βγ
αβµ (∂νψµ) η

ρ∂[νhρ]α

))

+∂α

(
i

2
k(1−k)

(
ψ̄βγ

αβσ (∂µψσ) η
ρ

−
1

4

(
ψ̄βγ

αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ
)

× σρλ∂[νηλ]
)
∂[µηρ]

)
. (154)

The right-hand side of (154) can be written like in the
right-hand side of (153) if the following conditions are sim-
ultaneously satisfied

δω′ =
(
ψ̄βγ

αβσ (∂µψσ) h
ρ
α−
(
ψ̄βγ

αβ[µψν]

−ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
σρλ∂[νhλ]α

)
∂[µηρ]

−2ψ̄βγ
αβµ (∂νψµ) η

ρ∂[νhρ]α , (155)

δl′α =

(
ψ̄βγ

αβσ (∂µψσ) η
ρ−
1

4

(
ψ̄βγ

αβ[µψν]

−ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
σρλ∂[νηλ]

)
∂[µηρ] .

(156)

Since none of the quantities hµβ , ∂
[α hβ]λ, ηβ , or ∂

[α ηβ] are
δ-exact, the last relations hold if the equations

ψ̄βγ
αβσ (∂µψσ) = δΩ

α
µ , (157)

ψ̄βγ
αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ = δΓ

µνα

(158)

take place simultaneously. Assuming that both (157)
and (158) are valid, they further give

∂α
(
ψ̄βγ

αβσ (∂µψσ)
)
= δ
(
∂αΩ

α
µ

)
, (159)

∂α

(
ψ̄βγ

αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
= δ (∂αΓ

µνα) .

(160)

On the other hand, by direct computation we obtain that

∂α
(
ψ̄βγ

αβσ (∂µψσ)
)
= δ
(
−i
(
ψ∗σ (∂µψσ)− ψ̄

σ
(
∂µψ̄

∗
σ

)))
,

(161)

∂α

(
ψ̄βγ

αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ
)

= δ
(
−iψ∗σγµνψσ−2iψ

∗[µψν]
)
− ψ̄αγ

αβ[µ∂ν]ψβ ,

(162)

so the right-hand sides of (161)–(162) cannot be written
like in the right-hand sides of (159)–(160). This means that
the relations (157)–(158) are not valid, and therefore nei-
ther are (155)–(156). As a consequence, χmust vanish, and
hence we must set

k (1−k) = 0 . (163)

Using (163), we conclude that

k = 1 . (164)

Inserting (164) in (143), we obtain that

∆
(int)
1 = γ

((
−
1

4

(
ψ∗[µψσ]+

1

2
ψ∗ργµσψρ

)
∂[σηλ]σ

νλ

+ψ∗σ (∂µψσ) η
ν

)
hµν

+
1

2

(
ψ∗µψν +

1

4
ψ∗σγµνψσ

)
ηρ∂[µhν]ρ

)
. (165)

Comparing (165) with (148), we find that

b
(int)
2 = 0 , (166)

b
(int)
1 =

1

8

(
ψ∗[µψσ]+

1

2
ψ∗ργµσψρ

)
hλµ∂[σηλ]

−
1

2
ψ∗σ (∂µψσ) η

νhµν

−
1

4

(
ψ∗µψν +

1

4
ψ∗σγµνψσ

)
ηρ∂[µhν]ρ .

(167)

Substituting (164) in (144) and using (167), we deduce

∆
(int)
0 +2δb

(int)
1 = ∂µn

µ
0 +γ

(
−
1

4
L(RS)0

(
h2−2hµνh

µν
)

+
i

8
ψ̄µγλψν

((
hλρ −hδ

λ
ρ

)
∂[µhν]λ

+hσν
(
2∂[µhσ]λ+∂λhµσ

))

+
i

4
ψ̄µγσψσ

(
h (∂µh−∂

νhµν)

+hρµ
(
∂λhρλ−∂ρh

)
−2hαβ∂µhαβ

+
3

2
hρλ∂ρhµλ +

1

2
hµν∂ρh

ρν

)

+
i

4
ψ̄µγ

µνβ (∂αψν)

(
hhαβ−

3

2
hασh

σ
β

)

− (V +V µν∂µψν)h

+
i

8
ψ̄βγ

βµαψν
((
hδρν −

1

2
hρν

)
∂[µhα]ρ

+hρµ (3∂αhνρ−2∂ρhαν)

)

+V µν
(
hµσ∂

σψν+ψ
σ∂[νhσ]µ

+
1

4
γαβψν∂[αhβ]µ

))
+Πµν∂[µην] ,

(168)
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where

Πµν = V µρ∂νψρ+
∂RV

∂ψµ
ψν +V ρµ∂ρψ

ν + ψ̄ν
∂LV ρλ

∂ψ̄µ
∂ρψλ

+
1

4

(
∂RV

∂ψρ
γµνψρ+V

ρλγµν∂ρψλ− ψ̄θγ
µν ∂

LV ρλ

∂ψ̄θ
∂ρψλ

)
.

(169)

We observe that (168) can be written like in (149) if and
only if

Πµν −Πνµ = ∂ρU
ρµν . (170)

The right-hand side of (169) splits according to the number
of derivatives into

Πµν =Πµν0 +Π
µν
1 , (171)

where we made the notations

Πµν0 =
∂RV

∂ψµ
ψν +

1

4

∂RV

∂ψρ
γµνψρ , (172)

Πµν1 = V
µρ∂νψρ+V

ρµ∂ρψ
ν + ψ̄ν

∂LV ρλ

∂ψ̄µ
∂ρψλ

+
1

4

(
V ρλγµν∂ρψλ− ψ̄θγ

µν ∂
LV ρλ

∂ψ̄θ
∂ρψλ

)
.

(173)

As Πµν0 has no derivatives, it cannot bring a divergence-
like contribution to (170), and Πµν1 contains just one
derivative, so in principle it may lead to a total derivative,
as required by (170). As a consequence, from (170) pro-
jected on the number of derivatives equal to zero, we find
thatΠµν0 is subject to the equation

Πµν0 −Π
νµ
0 = 0 , (174)

which is, via (172), equivalent to

∂RV

∂ψµ
ψν −

∂RV

∂ψν
ψµ =−

1

2

∂RV

∂ψρ
γµνψρ . (175)

If we generically represent ∂RV/∂ψµ in the form

∂RV

∂ψµ
= ψ̄αM

αµ (ψν) , (176)

(175) requires that

γ0V µνασ =
(
γ0V µνσα

)ᵀ
, (177)

where

V µνασ =Mαµσνσ−Mανσµσ+
1

2
Mασγµν =−V νµασ .

(178)

If we decompose V µνασ as

V µνασ = V µνασ0 1+V µνασ1 τγ
τ +V µνασ2 τγγ

τγ

+V µνασ3 τγργ
τγρ+V µνασ4 τγρλγ

τγρλ , (179)

the condition (177) implies the relations

V µνασ0 =−V µνσα0 , V µνασ1 τ = V
µνσα
1 τ ,

V µνασ2 τγ = V
µνσα
2 τγ , (180)

V µνασ3 τγρ =−V
µνσα
3 τγρ , V

µνασ
4 τγρλ =−V

µνσα
4 τγρλ .

(181)

In a similar manner, if we expand Mαµ along the basis in
the space of constant, 4×4 complex matrices

Mαµ =Mαµ0 1+M
αµ
1 τγ

τ +Mαµ2 τγγ
τγ

+Mαµ3 τγργ
τγρ+Mαµ4 τγρλγ

τγρλ , (182)

substitute (182) in (178), and take into account (180)–
(181), then we finally find that

Mαµ0 =m0 (ψ
ν)σαµ , Mαµ1 τ = 0 ,

Mαµ2 τγ =m2 (ψ
ν) δα[τ δ

µ
γ] , (183)

Mαµ3 τγρ = 0 , M
αµ
4 τγρλ =m4 (ψ

ν) ετγρλσ
αµ ,

(184)

where m0 (ψ
ν), m2 (ψ

ν),and m4 (ψ
ν) are arbitrary func-

tions. Replacing now (183)–(184) in (182) and then the re-
sulting expression in (176), we find that

∂RV

∂ψµ
=m0 (ψ

ν) ψ̄µ+2m2 (ψ
ν) ψ̄αγ

αµ+24im4 (ψ
ν) ψ̄µγ5

=
1

2
m0 (ψ

ν)
∂RX

∂ψµ
+m2 (ψ

ν)
∂RY

∂ψµ

+12m4 (ψ
ν)
∂RZ

∂ψµ
, (185)

with

X ≡ ψ̄µψ
µ , Y ≡ ψ̄αγ

αµψµ , Z ≡ iψ̄µγ5ψ
µ . (186)

The equation (185) shows that the solution to (175) is
nothing but an arbitrary polynomial ofX, Y , and Z, i.e.

V = V (X,Y, Z) . (187)

In order to complete the analysis of (170), we need to solve
its component of order one in the spacetime derivatives

Πµν1 −Π
νµ
1 = ∂ρU

ρµν , (188)

with Πµν1 given in (173) and Uρµν containing no deriva-
tives. Taking into consideration (173), it follows that (188)
restricts V µλ to satisfy the equation

V µλσνρ+V ρµσνλ−V νλσµρ−V ρνσµλ+ ψ̄ν
∂LV ρλ

∂ψ̄µ

− ψ̄µ
∂LV ρλ

∂ψ̄ν
+
1

2

(
V ρλγµν− ψ̄θγ

µν ∂
LV ρλ

∂ψ̄θ

)
=
∂RUρµν

∂ψλ
.

(189)

The last equation is fulfilled if there exist some ob-
jects Qµ such that the following conditions take place
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simultaneously:

V µλ =−
∂RQµ

∂ψλ
, (190)

∂RQρ

∂ψµ
σνλ−

∂RQρ

∂ψν
σµλ = 0 . (191)

On the other hand, by adding to and subtracting from
the left-hand side of (189) the quantity (1/2)

(
∂RQρ/∂ψλ

)

×γµν = ∂R (1/2 (Qργµν)) /∂ψλ, we can state that (189) is
checked if (190) and

∂RQρ

∂ψµ
σνλ−

∂RQρ

∂ψν
σµλ+

1

2

∂RQρ

∂ψλ
γµν = 0 (192)

are simultaneously verified. By multiplying (192) from the
right with ψλ we obtain the equation

∂RQρ

∂ψµ
ψν −

∂RQρ

∂ψν
ψµ+

1

2

∂RQρ

∂ψλ
γµνψλ = 0 , (193)

which shows that (see (175) and (187))

Qρ =Qρ (X,Y, Z) . (194)

SinceQµ like in (194) must provide V µλ via taking its right
derivative with respect to ψλ (see (190)), it results that

Qµ =Q (X,Y, Z)γµ , (195)

with Q (X,Y, Z) being an arbitrary polynomial. Formu-
las (190) and (195) together with some appropriate Fierz
identities further yield

V µν = ψ̄ρP
ρµν (X,Y, Z) , (196)

where

P ρµν (X,Y, Z) = (P ρµν)α (X,Y, Z)γ
α

+(P ρµν)αβγ (X,Y, Z)γ
αβγ .

(197)

The dependence on X, Y , and Z of the functions (P ρµν)α
and (P ρµν)αβγ enables us to conclude that the most gen-
eral form of these coefficients reads as

(P ρµν)α (X,Y, Z) = d1δ
ρ
ασ
µν +d2δ

µ
ασ
ρν +d3δ

ν
ασ
ρµ ,

(198)

(P ρµν)αβγ (X,Y, Z) = d4δ
ρ
[αδ
µ
βσ
ν
γ] , (199)

where (di)i=1,2,3,4 are arbitrary polynomials in X, Y , and

Z. We remark that (199) gives in (133), and thus in S
(int)
1 ,

a contribution (up to a trivial, s-exact term) that is already
contained in (187) since

ψ̄ρ (P
ρµν)αβγ γ

αβγ∂µψν = 6d4ψ̄µγ
µνρ∂νψρ

= s
(
−6id4ψ̄µψ̄

∗µ
)
−6id4ψ̄µγ

µνψν , (200)

so we can take, without loss of generality,

d4 = 0 (201)

in (199). Taking into account the last result and insert-
ing (198) in (197) and then in (196), we infer that

V µν∂µψν = d1ψ̄ργ
ρ∂µψ

µ+d2ψ̄
νγµ∂µψν +d3ψ̄

νγµ∂νψµ

= d1ψ̄ργ
ρ∂µψ

µ+
1

2
(d2+d3) ψ̄

νγµ∂(µψν)

+
1

2
(d3−d2) ψ̄

µγν∂[µψν]

= d1ψ̄ργ
ρ∂µψ

µ+
1

2
(d2+d3) ψ̄

νγµ∂(µψν)

+ s

(
−
i

4
(d3−d2)

(
ψ̄µγ

µνψ̄∗ν − ψ̄µψ̄
∗µ
)
)

−
im

2
(d3−d2)

(
ψ̄µψ

µ+ ψ̄µγ
µνψν

)
. (202)

Thus, up to an irrelevant, s-exact term, V µν∂µψν contains,
besides the first two pieces, the last component, which is
a contribution already considered in (187). We can thus
forget about it by setting

d3−d2 = 0 . (203)

At this stage, from (201) and (203) replaced in (198)–(199)
and the resulting relations further substituted in (197),
with the help of the representation (196) we determine the
relevant part of V µν under the form

V µν = d1 (X,Y, Z) ψ̄αγ
ασµν

+d2 (X,Y, Z)
(
ψ̄νγµ+ ψ̄µγν

)
. (204)

Consequently, we find that V µν∂µψν no longer contains the
unwanted (trivial or redundant) contributions, being pre-
cisely given by

V µν∂µψν = d1 (X,Y, Z) ψ̄ργ
ρ∂µψ

µ

+d2 (X,Y, Z) ψ̄
νγµ∂(µψν) . (205)

Based on the relations (204) and (205), we deduce that the
antisymmetric part ofΠµν1 must vanish

Πµν1 −Π
νµ
1 = 0 . (206)

As a consequence of this step of the deformation pro-
cedure, on the one hand the results (164), (187), and (205)
completely determine the component (133), and hence the
cross-coupling part of the first-order deformation (136) like

S
(int)
1 =

∫
d4x

(
ψ∗µ (∂νψµ) ην +

1

2
ψ∗µψν∂[µην]

+
1

8
ψ∗ργµνψρ∂[µην]

+
1

2

(
σρλL(RS)0 −

i

2
ψ̄µγ

µνρ∂λψν

)
hρλ+

i

4

×

(
1

2
ψ̄µγρψν +σµρψ̄νγσψσ+ ψ̄σγ

σρµψν
)
∂[µhν]ρ

+V +d1ψ̄ργ
ρ∂µψ

µ+d2ψ̄
νγµ∂(µψν)

)
. (207)
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On the other hand, (168), (174), (187), (204), and (206) of-

fer us the concrete form of b
(int)
0 as the solution to (149)

like

b
(int)
0 =

1

8
L(RS)0

(
h2−2hµνh

µν
)

−
i

16
ψ̄µγλψν

((
hλρ −hδ

λ
ρ

)
∂[µhν]λ

+hσν
(
2∂[µhσ]λ+∂λhµσ

))

−
i

8
ψ̄µγσψσ

(
h (∂µh−∂

νhµν)+h
ρ
µ

(
∂λhρλ−∂ρh

)

−2hαβ∂µhαβ+
3

2
hρλ∂ρhµλ+

1

2
hµν∂ρh

ρν

)

−
i

8
ψ̄µγ

µνβ (∂αψν)

(
hhαβ−

3

2
hασh

σ
β

)

−
i

16
ψ̄βγ

βµαψν
((
hδρν −

1

2
hρν

)
∂[µhα]ρ

+hρµ (3∂αhνρ−2∂ρhαν)

)

+
h

2
V +
d1

2
ψ̄ργ

ρ

(
h∂µψ

µ− (∂µψν)h
µν

−σµνψσ∂[νhσ]µ −
1

4
σµνγαβψν∂[αhβ]µ

)

+
d2

2
ψ̄ρ

(
hγµ∂µψ

ρ−hµνγµ∂νψ
ρ

−γµψλ∂
[ρhλ]µ−

1

4
γµγαβψρ∂[αhβ]µ

)

+
d2

2

(
hψ̄ργµ∂ρψµ−h

µνψ̄µγ
ρ∂νψρ

−ψ̄µγνψρ∂[νhρ]µ−
1

4
ψ̄µγνγαβψν∂[αhβ]µ

)
. (208)

Now, the components
(
b
(int)
I

)
I = 0 , 1, 2 expressed by (166),

(167), and (208) yield the cross-coupling part of the

second-order deformation S
(int)
2 =

∫
d4x
(
b
(int)
0 + b

(int)
1 +

b
(int)
2

)
as

S
(int)
2 =

∫
d4x

(
1

8

(
ψ∗[µψσ]+

1

2
ψ∗ργµσψρ

)
hλµ∂[σηλ]

−
1

2
ψ∗σ (∂µψσ) η

νhµν

−
1

4

(
ψ∗µψν +

1

4
ψ∗σγµνψσ

)
ηρ∂[µhν]ρ

+
1

8
L(RS)0

(
h2−2hµνh

µν
)

−
i

16
ψ̄µγλψν

((
hλρ −hδ

λ
ρ

)
∂[µhν]λ

+hσν
(
2∂[µhσ]λ+∂λhµσ

))

−
i

8
ψ̄µγσψσ

(
h (∂µh−∂

νhµν)+h
ρ
µ

(
∂λhρλ−∂ρh

)

−2hαβ∂µhαβ+
3

2
hρλ∂ρhµλ+

1

2
hµν∂ρh

ρν

)

−
i

8
ψ̄µγ

µνβ (∂αψν)

(
hhαβ−

3

2
hασh

σ
β

)

−
i

16
ψ̄βγ

βµαψν
((
hδρν −

1

2
hρν

)
∂[µhα]ρ

+hρµ (3∂αhνρ−2∂ρhαν)

)

+
h

2
V +
d1

2
ψ̄ργ

ρ

(

h∂µψ
µ− (∂µψν)h

µν

−σµνψσ∂[νhσ]µ−
1

4
σµνγαβψν∂[αhβ]µ

)

+
d2

2
ψ̄ρ

(

hγµ∂µψ
ρ−hµνγµ∂νψ

ρ

−γµψλ∂
[ρhλ]µ−

1

4
γµγαβψρ∂[αhβ]µ

)

+
d2

2

(
hψ̄ργµ∂ρψµ

−hµνψ̄µγ
ρ∂νψρ− ψ̄

µγνψρ∂[νhρ]µ

−
1

4
ψ̄µγνγαβψν∂[αhβ]µ

))
. (209)

This ends the second step of the deformation procedure
for the Pauli–Fierz field and the massive Rarita–Schwinger
field.

5 Lagrangian formulation
of the interacting theory

Themain aim of this section is to give an appropriate inter-
pretation of the Lagrangian formulation of the interacting
theory obtained in the previous section from the deforma-
tion of the solution to the master equation. In view of this,
we initially prove that the linearized versions of first- and
second-order formulations of spin-two field theory possess
isomorphic local BRST cohomologies. We start from the
first-order formulation of spin-two field theory

S [e µa , ωµab] =−
1

λ

∫
d4x

(
ω abν ∂µ (ee

µ
a e

ν
b )

−ω abµ ∂ν (ee
µ
a e

ν
b )

+
1

2
ee µa e

ν
b

(
ω acµ ω

b
ν c−ω

ac
ν ω

b
µ c

)
)
,

(210)

where e µa is the vierbein field and ωµab are the components
of the spin connection, while e is the inverse of the vierbein
determinant

e= (det (e µa ))
−1
. (211)

In order to linearize action (210), we develop the vierbein
as

e µa = δ
µ
a −

λ

2
f µa , e= 1+

λ

2
f , (212)
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where f is the trace of f µa . Consequently, we find that the
linearized form of (210) reads as (we come back to the no-
tations µ, ν, etc. for flat indices)

S′0 [fµν , ωµαβ ] =

∫
d4x

(
ω αµα (∂µf −∂

νfµν)

+
1

2
ωµαβ∂[α fβ]µ

−
1

2

(
ω αβα ωλλβ−ω

µαβωαµβ
)
)
.

(213)

We mention that the field fµν contains a symmetric, as well
as an antisymmetric part. The above linearized action is
invariant under the gauge transformations

δεfµν = ∂µεν− εµν , δεωµαβ =−∂µεαβ , (214)

where the latter gauge parameters are antisymmetric,
εαβ =−εβα. Eliminating the spin connection components
on their equations of motion (auxiliary fields) from (213)

ωµαβ (f) =
1

2

(
∂[µ fα]β−∂[µ fβ]α−∂[α fβ]µ

)
, (215)

we obtain the second-order action

S′0 [fµν , ωµαβ (f)] = S
′′
0 [fµν ]

=−

∫
d4x

(
1

8

(
∂[µ f ν]α

) (
∂[µ f ν]α

)

+
1

4

(
∂[µ f ν]α

) (
∂[µ fα]ν

)

−
1

2
(∂µf −∂

νfµν) (∂
µf −∂αf

µα)

)
,

(216)

subject to the gauge invariances

δεfµν = ∂(µ ε ν)− εµν . (217)

If we decompose fµν in its symmetric and antisymmetric
parts

fµν = hµν +Bµν , hµν = hνµ , Bµν =−Bνµ , (218)

the action (216) becomes

S′′0 [fµν ] = S
′′
0 [hµν , Bµν ]

=

∫
d4x

(
−
1

2
(∂µhνρ) (∂

µhνρ)+ (∂µh
µρ) (∂νhνρ)

− (∂µh) (∂νh
νµ)+

1

2
(∂µh) (∂

µh)

)
, (219)

while the accompanying gauge transformations are given
by

δεhµν = ∂(µ ε ν) , δεBµν =−εµν . (220)

It is easy to see that the right-hand side of (219) is nothing
but the Pauli–Fierz action

S′′0 [hµν , Bµν ] = S
PF
0 [hµν ] . (221)

As we have previously mentioned, we pass from (213)–
(214) to (219)–(220) via the elimination of the auxiliary
fields ωµαβ , such that the general theorems from Section 15
of the first reference in [23] ensure the isomorphism

H (s′|d)�H (s′′|d) , (222)

with s′ and s′′ the BRST differentials corresponding
to (213)–(214) and to (219)–(220), respectively. On the
other hand, we observe that the field Bµν does not appear
in (219) and is subject to a shift gauge symmetry. Thus, in
any cohomological class from H (s′′|d) one can take a rep-
resentative that is independent of Bµν , the shift ghosts
as well as of their antifields. This is because these vari-
ables form contractible pairs that drop out from H (s′′|d)
(see the general results in Section 14 of the first reference
in [23]). As a consequence, we have that

H (s′′|d)�H (s|d) , (223)

where s is the Pauli–Fierz BRST differential. Combin-
ing (222) and (223), we arrive at

H (s′|d)�H (s′′|d)�H (s|d) . (224)

Because the local BRST cohomology (in ghost number
equal to zero and one) controls the deformation procedure,
it results that the last isomorphisms allow one to pass in
a consistent manner from the Pauli–Fierz version to the
first- and second-order ones (in vierbein formulation) dur-
ing the deformation procedure.
It is easy to see that one can go from (219)–(220) to

the Pauli–Fierz version through the partial gauge-fixing
Bµν = 0. This gauge-fixing is a consequence of the more
general gauge-fixing condition [27]

σµ[ae
µ
b] = 0 . (225)

In the context of the larger partial gauge-fixing (225), sim-
ple computation leads to the vierbein fields e µa , their in-
verse eaµ, the inverse of their determinant e, and the com-
ponents of the spin connection ωµab up to the second order
in the coupling constant in terms of the Pauli–Fierz field as

e µa =
(0)
e
µ

a +λ
(1)
e
µ

a +λ
2(2)e

µ

a + . . .

= δ µa −
λ

2
h µa +

3λ2

8
h ρa h

µ
ρ + . . . , (226)

eaµ =
(0)
e
a

µ+λ
(1)
e
a

µ+λ
2(2)e

a

µ+ . . .

= δaµ+
λ

2
haµ−

λ2

8
haρh

ρ
µ+ . . . , (227)

e=
(0)
e +λ

(1)
e +λ2

(2)
e + . . .

= 1+
λ

2
h+
λ2

8

(
h2−2hµνh

µν
)
+ . . . , (228)

ωµab = λ
(1)
ω µab+λ

2(2)ω µab+ . . . , (229)

where

(1)
ω µab =−∂[ahb]µ , (230)
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(2)
ω µab=−

1

4

(
2hc[a

(
∂b]h

c
µ

)
−2h ν[a ∂νh b]µ−

(
∂µh

ν
[a

)
hb]ν

)
.

(231)

Based on the isomorphisms (224), we can further pass to
the analysis of the deformed theory obtained in the previ-
ous sections.
The component of antighost number equal to zero in

S
(int)
1 is precisely the interacting Lagrangian at order one in

the coupling constant L
(int)
1 = a

(int)
0 +a

(RS)
0

L(int)1 =

[
1

4
ψ̄µ (−iγ

µνρ∂νψρ+mγ
µνψν)h

]

+

[
i

4
ψ̄µγ

µνρ
(
∂λψρ

)
hνλ

]

+

[
i

4
ψ̄µγ

µνρ
(
∂νψ

λ
)
hρλ

]

+

[
i

8

(
ψ̄µγλψν −2σνλψ̄µγρψρ

)
∂[µhν]λ

]

+

[
−
i

8

(
2ψ̄µγ

µνρ
(
∂νψ

λ
)
hρλ+ ψ̄ργ

ρµνψλ∂[µhν]λ
)
]

+[V ]+
[
d1ψ̄ργ

ρ∂µψ
µ
]
+
[
d2ψ̄

(µγν)∂µψν

]

≡
(1)
e L(RS)0 +

(0)
e
(1)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)

+
(0)
e
µ

b

(1)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)

+
(0)
e
(0)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(1)

Dµ
(0)

ψ ν

)

+
(0)
e
(0)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(1)

ψ ν

)

+
(0)
e V +d1ψ̄aγ

a
(0)

Dµ

(
(0)
e
(0)

ψ

µ
)

+d2
(0)
e ψ̄(aγb)

(0)
e
µ

b

(0)
e
ν

c

(0)

Dµ

(
(0)
e
(0)

ψ ν

)

, (232)

where

(0)

Dµ = ∂µ , (233)

and

(1)

Dµ =
1

8

(1)
ω µabγ

ab , (234)

with
(1)
ω µab given in (230). Along the same lines, the piece of

antighost number equal to zero from the second-order de-
formation offers us the interacting Lagrangian at order two

in the coupling constant L
(int)
2 = b

(int)
0

L
(int)
2 = b

(int)
0

=

[
1

16
ψ̄µ (−iγ

µνρ∂νψρ+mγ
µνψν)

(
h2−2hαβh

αβ
)
]

+

[
i

8
ψ̄µ
(
γµαν

(
∂βψν

)
hαβ+γ

µνρ
(
∂νψ

λ
)
hρλ
)
h

]

+

[
ih

16

(
−ψ̄µγ

µνρ
(
2
(
∂νψ

λ
)
hρλ+ψ

λ∂[ν hρ]λ
)

+
(
ψ̄αγρψβ−2σβρψ̄αγµψµ

)
∂[αhβ]ρ

)
]

+

[
−
i

8
ψ̄µγ

µνρ (∂αψβ)h
α
νh
β
ρ

]

+

[
i

8

(
ψ̄αγ

αβγ
(
hµβ∂µ

(
hσγψσ

)
+hµγ∂β

(
hσµψσ

))

−
1

2

(
ψ̄µγρψ

νhρσ−2ψ̄µγρψρh
νσ
)
∂[µhν]σ

)]

+

[
i

8

(
ψ̄αγ

αβγ∂β
(
hµγh

σ
µψσ
)

−
1

2
ψ̄µ
(
γρψρ

(
3hµλ∂σh

λσ

+hλσ∂λhµσ−2hµσ∂
σh−2hαβ∂µhαβ

)

−γλψν
(
2hρµ∂νh

ρ
λ−2h

ρ
µ∂ρhνλ−hνρ∂λh

ρ
µ

)))
]

+

[
3i

16
ψ̄µγ

µνβ (∂αψν)hασh
σ
β

]

+

[
−
3i

16
ψ̄µγ

µνρ (∂νψλ)hρσh
σλ

]

+

[
h

2
V

]
+

[
d1ψ̄ργ

ρ∂µ

(
h

2
ψµ
)]

+

[
−
d1

2
ψ̄ργ

ρ∂µ (ψνh
µν)

]

+

[
−
d1

8
ψ̄ργ

ργαβψµ∂[αhβ]µ

]
+

[
d2

2
hψ̄(µγν)∂µψν

]

+

[
−
d2

2
hµαψ̄

(αγν)∂µψν

]

+

[
−d2ψ̄

(µγν)
(
1

2
ψρ∂[νhρ]µ+

1

8
γαβψν∂[αhβ]µ

)]

≡

[
(2)
e L(RS)0

]
+

[
(1)
e

(
(0)
e
µ

b

(1)
e
ν

c +
(1)
e
µ

b

(0)
e
ν

c

)

×

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)]

+

[
(1)
e
(0)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc

(
(0)

Dµ
(1)

ψ ν +
(1)

Dµ
(0)

ψ ν

))]

+

[
(0)
e
(1)
e
µ

b

(1)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)]

+

[
(0)
e
(1)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc

(
(0)

Dµ
(1)

ψ ν +
(1)

Dµ
(0)

ψ ν

))

+
(0)
e
(0)
e
µ

b

(1)
e
ν

c

(

−
i

2
ψ̄aγ

abc

(
(0)

Dµ
(1)

ψ ν+
(1)

Dµ
(0)

ψ ν

))]

+

[
(0)
e
(0)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc

(
(0)

Dµ
(2)

ψ ν +
(1)

Dµ
(1)

ψ ν
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+
(2)

Dµ
(0)

ψ ν

))]

+

[
(0)
e
(2)
e
µ

b

(0)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)]

+

[
(0)
e
(0)
e
µ

b

(2)
e
ν

c

(

−
i

2
ψ̄aγ

abc
(0)

Dµ
(0)

ψ ν

)]

+

[
(1)
e V

]

+

[

d1ψ̄aγ
a
(0)

Dµ

(
(1)
e
(0)

ψ

µ
)]

+

[

d1ψ̄aγ
a
(0)

Dµ

(
(0)
e
(1)

ψ

µ
)]

+

[

d1ψ̄aγ
a
(1)

Dµ

(
(0)
e
(0)

ψ

µ
)]

+

[

d2
(1)
e
(0)
e
µ

a ψ̄
(aγb)

(0)

Dµψb

]

+

[

d2
(0)
e
(1)
e
µ

a ψ̄
(aγb)

(0)

Dµψb

]

+

[

d2
(0)
e
(0)
e
µ

a ψ̄
(aγb)

(1)

Dµψb

]

, (235)

where

(2)

Dµ =
1

8

(2)
ω µabγ

ab (236)

and
(2)
ω µab like in (231). With the help of (226) and (228) we

deduce that L(RS)0 +λL(int)1 +λ2L(int)2 + · · · comes from ex-
panding the fully deformed Lagrangian written in terms of
either the original flat Rarita–Schwinger spinor ψa

L(int) =
e

2

(
−iψ̄ae

ν
b e

ρ
c γ
abcDν

(
edρψd

)
+mψ̄aγ

abψb
)

+λ
[
eV (X,Y, Z)+d1 (X,Y, Z) ψ̄aγ

aDµ
(
ee µb ψ

b
)

+ed2 (X,Y, Z) e
µ
a ψ̄

(aγb)Dµψb

]
, (237)

or the curved Rarita–Schwinger spinor ψµ

L(int) =
e

2

(
−iψ̄µe

µ
a e

ν
b e

ρ
c γ
abcDνψρ+mψ̄µe

µ
a γ

abe νb ψν
)

+λ
[
eV (X,Y, Z)+d1 (X,Y, Z) e

ν
a ψ̄νγ

aDµ (eψ
µ)

+ed2 (X,Y, Z)
(
ψ̄µγb+ e µa e

b
ρψ̄
ργa
)
Dµ (e

ν
b ψν)

]
.

(238)

The notations Dµψa and Dµψρ denote the full covariant
derivatives of ψa and ψρ, respectively

Dµψa = ∂µψa+
1

2
ωµabψ

b+
1

8
γbcψaωµbc , (239)

Dµψρ = ∂µψρ+
1

8
ωµabγ

abψρ . (240)

The pieces linear in the antifields ψ∗µ from the deformed
solution to the master equation give us the deformed gauge

transformations for the Rarita–Schwinger fields as

δεψµ = λ

(
(∂αψµ) εα+

1

2
ψν∂[µεν]+

1

8
γαβψµ∂[αεβ]

)

+λ2
(
−
1

2
(∂αψµ) εβh

αβ+
1

16
γρλψµh

σ
ρ∂[λεσ]

+
1

8
ψρ
(
hλµ∂[ρελ]−h

λ
ρ∂[µελ]

)
−
1

4
ψνερ∂[µhν]ρ

−
1

16
γαβψµε

ρ∂[αhβ]ρ

)

= λ
(1)

δ εψµ+λ
2
(2)

δ εψµ+ . . . . (241)

The first two orders of the gauge transformations can be
put under the form

(1)

δ εψm = (∂µψm)
(0)
ε̄

µ

+
1

2

(0)
ε mnψ

n+
1

4
γabψm

(0)
ε ab ,

(242)

(2)

δ εψm = (∂µψm)
(1)
ε̄

µ

+
1

2

(1)
ε mnψ

n+
1

4
γabψm

(1)
ε ab ,

(243)

where we used the notations

(0)
ε̄

µ

= εµ = εaδ µa ,
(1)
ε̄

µ

=−
1

2
εah µa , (244)

(0)
ε ab =

1

2
∂[aεb] , (245)

(1)
ε ab =−

1

4
εc∂[ahb]c+

1

8
hc[a∂b]εc+

1

8

(
∂cε[a

)
hcb] .

(246)

Based on these notations, the gauge transformations of the
spinors take the form

δεψm = λ

(
(∂µψm)

(
(0)
ε̄

µ

+λ
(1)
ε̄

µ

+ . . .

)

+

(
(0)
ε mn+λ

(1)
ε mn+ . . .

)
ψn

+
1

4
γabψm

(
(0)
ε ab+λ

(1)
ε ab+ . . .

))
. (247)

The gauge parameters
(0)
ε ab and

(1)
ε ab are precisely the first

two terms from the Lorentz parameters expressed in terms
of the flat parameters εa via the partial gauge-fixing (225).
Indeed, (225) leads to

δ̄εσµ[ae
µ
b] = 0 , (248)

where

δ̄εe
µ
a = ε̄

ρ∂ρe
µ
a − e

ρ
a ∂ρε̄

µ+ ε ba e
µ
b . (249)

Substituting (226) together with the expansions

ε̄µ =
(0)
ε̄

µ

+λ
(1)
ε̄

µ

+ . . .=

(
δ µa −

λ

2
h µa + . . .

)
εa (250)
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and

εab =
(0)
ε ab+λ

(1)
ε ab+ . . . (251)

in (248), we arrive precisely at (245)–(246). At this point
it is easy to see that the gauge transformations (247) come
from the perturbative expansion of the full gauge trans-
formations

δεψm = λ

(
(∂µψm) ε̄

µ+ εmnψ
n+
1

4
γabψmεab

)
. (252)

Moreover, based on (252) and (249), it is easy to see that

δεψ
µ = λ

(
(∂σψ

µ) ε̄σ−ψσ∂σ ε̄
µ+
1

4
γabψµεab

)
. (253)

In conclusion, under the above mentioned hypotheses
we have shown that the interactions between a massive
Rarita–Schwinger field and a spin-two field are described
by the coupled Lagrangian (237) or (238), while the gauge
transformations of the Rarita–Schwinger spinors are given
by (252) or (253). If we require in addition that the inter-
acting model remains PT-invariant, then the results (237)–
(238) remain valid up to the point that the functions
V , d1, and d2 must depend only on X and Y (and not
on Z).

6 Impossibility of cross-interactions
between gravitons in the presence
of the massive Rarita–Schwinger field

As it has been proved in [16] , there are no direct cross-
couplings that can be introduced among a finite number
of gravitons and also no intermediate cross-couplings be-
tween different gravitons in the presence of a scalar field.
In this section, under the hypotheses of locality, smooth-
ness of the interactions in the coupling constant, Poincaré
invariance, Lorentz covariance, and the preservation of the
number of derivatives on each field, we will prove that
there are no intermediate cross-couplings between differ-
ent gravitons intermediated by a massive spin-3/2 field. In
order to ensure the stability of the Minkowski vacuum (ab-
sence of negative-energy excitations or of negative-norm
states) we assume in addition that the metric in internal
space is positively defined. It is always possible to bring the
internal metric to the form δAB by a linear redefinition of
the Pauli–Fierz fields. This is the convention we will work
with in the sequel.
In view of this we start from a finite sum of Pauli–Fierz

actions and a massive Rarita–Schwinger action

SL0
[
hAµν , ψµ

]
=

∫
d4x

(
−
1

2

(
∂µh

A
νρ

)
(∂µhνρA )

+ (∂µh
µρ
A )
(
∂νhAνρ

)

−
(
∂µh

A
)
(∂νh

νµ
A )+

1

2

(
∂µh

A
)
(∂µhA)

)

+

∫
d4xψ̄

×

(
−
i

2
ψ̄µγ

µνρ∂νψρ+
m

2
ψ̄µγ

µνψν

)
,

(254)

where hA denotes the trace of the field h
µν
A (hA = σµνh

µν
A ),

withA the collection index, running from 1 to n. The gauge
transformations of the action (254) read as

δεh
A
µν = ∂(µε

A
ν) , δεψµ = 0 . (255)

The BRST complex comprises the fields/ghosts

φα0 =
(
hAµν , ψµ

)
, ηAµ , (256)

and their antifields, respectively,

φ∗α0 =
(
h∗µνA , ψ∗µ

)
, η∗µA . (257)

The BRST differential splits in this situation like in (8),
while the actions of δ and γ on the BRST generators are
defined by

δh∗µνA = 2HµνA , δψ
∗µ =mψ̄λγ

λµ− i∂ρψ̄λγ
ρλµ ,

(258)

δη∗µA =−2∂νh
∗µν
A , (259)

δφα0 = 0 , δηAµ = 0 , (260)

γφ∗α0 = 0 , γη
∗µ
A = 0 , (261)

γhAµν = ∂(µη
A
ν) , γψµ = 0 , γη

A
µ = 0 , (262)

whereHµνA =K
µν
A −

1
2σ
µνKA is the linearized Einstein ten-

sor for the field hµνA . In this case, the solution to the master
equation reads as

S̄ = SL0
[
hAµν , ψµ

]
+

∫
d4x
(
h∗µνA ∂(µη

A
ν)

)
. (263)

The first-order deformation of the solution to the mas-
ter equation may be decomposed in a manner similar to the
case of a single graviton

α= α(PF)+α(int)+α(RS) . (264)

The first-order deformation in the Pauli–Fierz sector,
α(PF), is of the form [16]

α(PF) = α
(PF)
2 +α

(PF)
1 +α

(PF)
0 , (265)

with

α
(PF)
2 =

1

2
fABCη

∗µ
A η

Bν∂[µη
C
ν] . (266)

In (266) all the coefficients fABC are constant. The con-

dition that α
(PF)
2 indeed produces a consistent α

(PF)
1 im-

plies that these constants must be symmetric in their lower



C. Bizdadea et al.: No interactions for a collection of spin-two fields intermediated by a massive Rarita–Schwinger field 285

indices [16]4

fABC = f
A
CB . (267)

With (267) at hand, we find that

α
(PF)
1 = fABCh

∗µρ
A

((
∂ρη

Bν
)
hCµν −η

Bν∂[µh
C
ν]ρ

)
. (268)

The requirement that α
(PF)
1 leads to a consistent α

(PF)
0 im-

plies that fABC must be symmetric [16]
5

fABC =
1

3
f(ABC) , (269)

where, by definition, fABC = δADf
D
BC . Based on (269), we

obtain that the resulting α
(PF)
0 reads as in [16] (where this

component is denoted by a0 and fABC by aabc).
If one goes along exactly the same lines as in Sect. 4.2,

one obtains that α(int) = α
(int)
1 +α

(int)
0 , where

α
(int)
1 = kAψ

∗µ (∂νψµ) η
A
ν +
kA

2
ψ∗µψν∂[µη

A
ν]

+
kA

8
ψ∗ργµνψρ∂[µη

A
ν] , (270)

α
(int)
0 =

kA

2

(
σρλL(RS)0 −

i

2
ψ̄µγ

µνρ∂λψν

)
hAρλ

+
ikA
4

(
1

2
ψ̄µγρψν +σµρψ̄νγσψσ+ ψ̄σγ

σρµψν
)

×∂[µh
A
ν]ρ , (271)

and kA are some real constants. Meanwhile, we find in
a direct manner that

α(RS) = a
(RS)
0 , (272)

with a
(RS)
0 given in (133).

Let us investigate next the consistency of the first-order
deformation. If we perform the notations

Ŝ
(PF)
1 =

∫
d4xα(PF) , (273)

Ŝ
(int)
1 =

∫
d4x
(
α(int)+α(RS)

)
, (274)

Ŝ1 = Ŝ
(PF)
1 + Ŝ

(int)
1 , (275)

then the equation
(
Ŝ1 , Ŝ1

)
+2sŜ2= 0 (expressing the con-

sistency of the first-order deformation) equivalently splits
into two independent equations

(
Ŝ
(PF)
1 , Ŝ

(PF)
1

)
+2sŜ

(PF)
2 = 0 , (276)

2
(
Ŝ
(PF)
1 , Ŝ

(int)
1

)
+
(
Ŝ
(int)
1 , Ŝ

(int)
1

)
+2sŜ

(int)
2 = 0 ,

(277)

4 The term (266) differs from that corresponding to [16]
through a γ-exact term, which does not affect (267).
5 The piece (268) differs from that corresponding to [16]
through a δ-exact term, which does not change (269).

where Ŝ2 = Ŝ
(PF)
2 + Ŝ

(int)
2 . (276) requires that the constants

fCAB satisfy the supplementary conditions [16]

fDA[Bf
E
C]D = 0 , (278)

thus they are the structure constants of a finite-dimensional,
commutative, symmetric, and associative real algebra A.
The analysis realized in [16] shows us that such an algebra
has a trivial structure (being expressed like a direct sum of
some one-dimensional ideals). Thus, we obtain that

fCAB = 0 if A �=B . (279)

Let us analyze now (277). If we denote by ∆̂(int)

and β(int) the non-integrated densities of the functionals

2
(
Ŝ
(PF)
1 , Ŝ

(int)
1

)
+
(
Ŝ
(int)
1 , Ŝ

(int)
1

)
and of Ŝ

(int)
2 , respec-

tively, then (277) takes the local form

∆̂(int) =−2sβ(int)+∂µk
µ , (280)

with

gh
(
∆̂(int)

)
= 1, gh

(
β(int)

)
= 0 , gh (kµ) = 1 . (281)

The computation of ∆̂(int) reveals in our case the following
decomposition along the antighost number

∆̂(int) = ∆̂
(int)
0 + ∆̂

(int)
1 , agh

(
∆̂
(int)
I

)
= I, I = 0 , 1,

(282)

with

∆̂
(int)
1 = γ

((
−
1

4
kAf

A
BC

(
ψ∗[µψσ]+

1

2
ψ∗ργµσψρ

)

×∂[ση
B
λ]σ
νλ+ψ∗σ (∂µψσ) η

Bν

)
hCµν

+

(
kBkC −

1

2
kAf

A
BC

)(
ψ∗µψν +

1

4
ψ∗σγµνψσ

)

×ηBρ∂[µh
C
ν]ρ

)

+
(
kAf

A
BC−kBkC

) (
ψ∗µ (∂νψµ) η

Bρ∂[νη
C
ρ]

+
1

4

(
ψ∗[µψν] +

1

2
ψ∗σγµνψσ

)
∂[µη

B
ρ]∂[νη

C
λ]σ
ρλ

)
.

(283)

The concrete form of ∆̂
(int)
0 is not important in what fol-

lows and, therefore, we will skip it. Due to the expan-
sion (282), we have that β(int) and kµ from (280) split like

β(int) = β
(int)
0 +β

(int)
1 +β

(int)
2 ,

agh
(
β
(int)
I

)
= I, I = 0, 1, 2 , (284)

kµ = kµ0 +k
µ
1 +k

µ
2 , agh (k

µ
I ) = I, I = 0, 1, 2 .

(285)

By projecting (280) on the various decreasing values of
the antighost number, we obtain the equivalent tower of
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equations

γβ
(int)
2 = ∂µ

(
1

2
kµ2

)
, (286)

∆̂
(int)
1 =−2

(
δβ
(int)
2 +γβ

(int)
1

)
+∂µk

µ
1 , (287)

∆̂
(int)
0 =−2

(
δβ
(int)
1 +γβ

(int)
0

)
+∂µk

µ
0 . (288)

By a trivial redefinition, (286) can always be replaced with

γβ
(int)
2 = 0 . (289)

Analyzing the expression of ∆̂
(int)
1 in (283) we observe that

it can be written like in (287) if the quantity

χ̂=
(
kAf

A
BC−kBkC

)
(
ψ∗µ (∂νψµ) η

Bρ∂[νη
C
ρ]+
1

4

(
ψ∗[µψν]

+
1

2
ψ∗σγµνψσ

)
∂[µη

B
ρ]∂[νη

C
λ]σ
ρλ

)

(290)

can be put in the form

χ̂= δϕ̂+γω̂+∂µj
µ . (291)

Assume that (291) holds. Then, by applying δ on this equa-
tion we infer

δχ̂= γ (−δω̂)+∂µ (δj
µ) . (292)

On the other hand, if we use the concrete expression (290)
of χ̂, by direct computation we are led to

δχ̂= γ

(
1

2

(
kAf

A
BC−kBkC

)

× δ
(
ψ∗ρψρη

B
ν

(
∂µh

Cµν−∂νhC
))
)

+∂µ
(
1

2

(
kAf

A
BC−kBkC

)
δ
(
ψ∗ρψρη

Bν∂[µη
C
ν]

))

+γ

(
i

4

(
kAf

A
BC−kBkC

) ((
ψ̄βγ

αβσ (∂µψσ) h
Bρ
α

−
(
ψ̄βγ

αβ[µψν] −ψ̄µγαψν −σα[µψ̄ν]γσψσ
)

× σρλ∂[νh
B
λ]α

)
∂[µη

C
ρ]

−2ψ̄βγ
αβµ (∂νψµ) η

Bρ∂[νh
C
ρ]α

))

+∂α

(
i

2

(
kAf

A
BC−kBkC

) (
ψ̄βγ

αβσ (∂µψσ) η
Bρ

−
1

4

(
ψ̄βγ

αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ
)

×σρλ∂[νη
B
λ]

)
∂[µη

C
ρ]

)
. (293)

The right-hand side of (293) can be written like in the
right-hand side of (292) if the following conditions are sim-

ultaneously fulfilled

i

4

(
kAf

A
BC−kBkC

){[
ψ̄βγ

αβσ (∂µψσ)h
ρ
α−
(
ψ̄βγ

αβ[µψν]

−ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
σρλ∂[νh

B
λ]α

]
∂[µη

C
ρ]

−2ψ̄βγ
αβµ (∂νψµ) η

Bρ∂[νh
C
ρ]α

}
=−δω̂′ , (294)

i

2

(
kAf

A
BC−kBkC

)
(
ψ̄βγ

αβσ (∂µψσ) η
Bρ−

1

4

(
ψ̄βγ

αβ[µψν]

−ψ̄µγαψν −σα[µψ̄ν]γσψσ
)
σρλ∂[νη

B
λ]

)
∂[µη

C
ρ] = δj

′µ .

(295)

However, from the action of δ on the BRST generators we
observe that none of hAµβ , ∂[αh

A
β]µ, η

A
β , or ∂[λη

A
β] are δ-

exact. In consequence, the relations (294)–(295) hold if the
equations

ψ̄βγ
αβσ (∂µψσ) = δΩ

α
µ (296)

and

ψ̄βγ
αβ[µψν]− ψ̄µγαψν −σα[µψ̄ν]γσψσ = δΓ

µνα (297)

take place simultaneously. The last equations are pre-
cisely (157) and (158), respectively. Due to the fact that
they do not involve (Pauli–Fierz) collection indices, some
arguments identical to those employed in Sect. 4.3 ensure
that (296) and (297) cannot be satisfied. As a consequence,
χ̂must vanish, which further implies that

kDf
D
AB−kAkB = 0 . (298)

Using (298) and (279) we obtain that for A �=B

kAkB = 0 , (299)

which shows that the Rarita–Schwinger field can couple to
only one graviton, so the assertion from the beginning of
this section is finally proved.

7 Conclusion

To conclude, in this paper we have investigated the cou-
plings between a collection of massless spin-two fields (de-
scribed in the free limit by a sum of Pauli–Fierz actions)
and a massive Rarita–Schwinger field using a powerful set-
ting based on local BRST cohomology. Initially, we showed
that if we decompose the metric like gµν = σµν + ghµν,
then we can couple the massive Rarita–Schwinger field
to hµν in the space of formal series with the maximum
derivative order equal to one in hµν . The interacting La-
grangian L(int) obtained here contains, besides the stan-
dard minimal couplings, also three types of non-minimal
couplings, which are not discussed in the literature, but
are nevertheless consistent with the gauge symmetries of
the Lagrangian L2+L(int), where L2 is the full spin-two
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Lagrangian in the vierbein formulation. Next, we have
proved, under the hypotheses of locality, smoothness of the
interactions in the coupling constant, Poincaré invariance,
(background) Lorentz invariance and the preservation of
the number of derivatives on each field, that there are no
consistent cross-interactions among different gravitons in
the presence of a massive Rarita–Schwinger field if the met-
ric in internal space is positively defined.
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Appendix A: Main conventions and properties
of the γ-matrices

Here, we collect the main conventions and properties of the
representation of the γ-matrices employed in this paper.
We work with the charge conjugation matrix

C =−γ0 (A.1)

and with that representation of the Clifford algebra

γµγν +γνγµ = 2σµν1 , (A.2)

for which all the γ-matrices are purely imaginary. In add-
ition, γ0 is Hermitian and antisymmetric, while (γi)i=1,3
are anti-Hermitian and symmetric. We take a basis in the
space of spinor matrices of the form

1 , γµ , γµ1µ2 , γµ1µ2µ3 , γµ1µ2µ3µ4 , (A.3)

where

γµ1···µk =
1

k!

∑

σ∈Sk

(−)σ γµσ(1)γµσ(2) · · · γµσ(k) . (A.4)

In the above definition, Sk is the set of permutations of
{1, 2, . . . , k} and (−)σ denotes the signature of a given per-
mutation σ. This means that any 4× 4 matrix M with
purely spinor indices can be expressed in terms of the ma-
trices (A.3) via

M =
1

4

4∑

k=0

(−)k(k−1)/2
1

k!
Tr (γµ1···µkM) γµ1···µk . (A.5)

We list below some Fierz identities that are useful
for the construction of consistent interactions between
the Pauli–Fierz field and the massive Rarita–Schwinger
spinor. They provide the products of the various elements

from (A.3) in terms of their linear combinations

γµνγ
ρ =−δρ[µγν]+γ

ρ
µν , (A.6)

γµνγ
ρλ =−δρ[µδ

λ
ν]1− δ

[ρ
[µγ

λ]
ν] +γ

ρλ
µν , (A.7)

γµνγ
ρλσ =−δ[ρµ δ

λ
νγ
σ]− δ[ρ[µγ

λσ]
ν] , (A.8)

γµνγ
ρλσξ =−δ[ρµ δ

λ
νγ
σξ] , (A.9)

γµνργ
α = δα[µγνρ]+γ

α
µνρ , (A.10)

γµνργ
αβγ =−δ[αµ δ

β
ν δ
γ]
ρ 1− δ

[α
[µδ
β
ν γ

γ]
ρ] . (A.11)

Moreover, in the chosen representation of the γ-matrices
the elements of the basis (A.3) display the following sym-
metry/antisymmetry properties:

γ0γµ , γ0γµν (A.12)

are symmetric and

γ0γµνρ , γ0γµνρλ , γ0γ5 (A.13)

are antisymmetric. If we take γ5 = iγ0γ1γ2γ3 and workwith
ε0123 =−ε0123 = 1, then

γµνρλ = εµνρλγ0γ1γ2γ3 = iεµνρλγ5 , (A.14)

γµνρλ =−εµνρλγ0γ1γ2γ3 = iεµνρλγ5 . (A.15)

Appendix B: Proof of some assertions
made in Sect. 4.2

Initially, we show that our statement from footnote 3 is
indeed valid. The terms linear in the Pauli–Fierz anti-
field h∗µν that can in principle be added to a

(int)
1 have the

generic form

ã
(int)
1 = h∗µν

(
Mρµνηρ+M

ρλ
µν∂[ρηλ]

)
≡ ã′(int)1 + ã

′′(int)
1 ,

(B.1)

where Mρµν and M
ρλ
µν are bosonic, real, gauge-invariant

functions. Imposing that (B.1) satisfies the requirements
i)–ii) from Sect. 4.2, the functions Mρµν and M

ρλ
µν are re-

stricted to depend at most on the undifferentiated Rarita–
Schwinger field. The consistency equation for ã

(int)
1 in anti-

ghost number zero

δã
(int)
1 +γã

(int)
0 = ∂µj̃

(int)
0 (B.2)

is independent of that for a
(int)
1 of the form (57) since the

former piece produces in ã
(int)
0 components quadratic in the

Pauli–Fierz field, while the latter introduces in a
(int)
0 terms

linear in hµν . Moreover, the consistency equation of ã
′(int)
1

is independent of that implying ã
′′(int)
1 due to the differ-

ent number of derivatives contained in these two types of
terms, so (B.2) is equivalent to the equations

δã
′(int)
1 +γã

′(int)
0 = ∂µj̃

′(int)
0 , (B.3)

δã
′′(int)
1 +γã

′′(int)
0 = ∂µj̃

′′(int)
0 . (B.4)
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Now, we prove that (B.1) is not consistent in antighost

number zero, i.e. there are no solutions ã
′(int)
0 or ã

′′(int)
0

to (B.3)–(B.4). To this end we use the fact that the lin-
earized Einstein tensor (17) can be written as

Hµν = ∂α∂βφ
µανβ , (B.5)

with

φµανβ =
1

2

(
−hµνσαβ+hανσµβ+hµβσαν −hαβσµν

+h
(
σµνσαβ−σµβσαν

))
. (B.6)

By direct computation, we find that

δã
′(int)
1 =−2∂α∂βφ

µανβMρµνηρ

= ∂α
(
−2
(
∂βφ

µανβ
)
Mρµνηρ

)

+∂β
(
2φµανβ∂α

(
Mρµνηρ

))

+φµανβ∂[µM
ρ
α]ν∂[βηρ]+

1

2
φµανβ∂[µM

ρ
α][ν,β]ηρ

+γ

(

φµανβ

(

∂[µM
ρ
α]νhβρ−2M

ρ
µν

(1)

Γ ραβ

))

−
(
γφµανβ

)
(

∂[µM
ρ
α]νhβρ−2M

ρ
µν

(1)

Γ ραβ

)

,

(B.7)

where

(1)

Γ ραβ =
1

2
(∂αhβρ+∂βhαρ−∂ρhαβ) . (B.8)

Comparing (B.7) with (B.3) and observing that the term
in (B.7) involving

(
γφµανβ

)
comprises the symmetric

derivatives ∂(βηρ), it follows that this piece, which is con-
strained to contribute to a full divergence, can only re-
alize this task together with the part proportional with
∂[µM

ρ
α][ν,β]. Accordingly, the γ-exactness modulo d of the

right-hand side of (B.7), which is demanded by (B.3), re-
quires that the functionsMρµν are subject to the equations

∂[µM
ρ
α]ν = 0 , (B.9)

possessing the trivial solution

Mραν = 0 , (B.10)

sinceMραν are derivative-free (they depend only on the un-
differentiated spinor-vector ψµ). In an identical manner,
starting with

δã
′′(int)
1 =−2∂α∂βφ

µανβMρλµν ∂[ρηλ]

= ∂α
(
−2
(
∂βφ

µανβ
)
Mρλµν∂[ρηλ]

)

+∂β
(
2φµανβ∂α

(
Mρλµν ∂[ρηλ]

))

+
1

2
φµανβ∂[µM

ρλ
α][ν,β]∂[ρηλ]

+γ
(
2φµανβ

(
∂[µM

ρλ
α]ν∂[ρhλ]β−M

ρ
µν∂α∂[ρhλ]β

))

−2
(
γφµανβ

)

×
(
∂[µM

ρλ
α]ν∂[ρhλ]β−M

ρ
µν∂α∂[ρhλ]β

)
, (B.11)

we argue that the functionsMρλµν must obey the equations

∂[µM
ρλ
α][ν,β] = 0 , (B.12)

which, due to the fact thatMρλµν are derivative-free, possess
only the trivial solution

Mρλµν = 0 . (B.13)

If we substitute the results (B.10) and (B.13) into (B.1), we
conclude that there is no term linear in thePauli–Fierz anti-
field h∗µν that can be added to a

(int)
1 such as to give a consis-

tent component of antighost number zero in the first-order
deformation of the solution to the master equation.
Finally, we show that we can always make the func-

tions c1, c2, and c3 from (57) vanish via adding some triv-
ial terms and making some redefinitions of the functions
N̄ρλσµ. In view of this, we insert (65) in (57), such that the

part from a
(int)
1 proportional with c1, c2, or c3 reads as

T (c1 , c2 , c3) =

[
c1

(
ψ∗λγµψµ−

1

2
ψ∗µγ

µνλψν

)

+ c2
(
ψ∗µγλψµ−ψ

∗
µγ
µνλψν

)

+c3

(
ψ∗µγµψ

λ−
3

2
ψ∗µγ

µνλψν

)]
ηλ .

(B.14)

Based on the second definition in (12) related to the
Koszul–Tate differential and on the Fierz identities from
the previous appendix section, we obtain that

δ
(
ψ∗λγµψ̄

∗µ
)
=−4mψ∗λγµψµ+mψ

∗µγλψµ

+mψ∗µγ
µνλψν +i

(
3ψ∗λγµν+ψ∗[µγν]λ

)

×∂µψν +iψ
∗
µγ
µνρλ∂νψρ , (B.15)

δ
(
ψ∗µγ

λψ̄∗µ
)
=−2mψ∗λγµψµ+2mψ

∗
µγ
µψλ

−2mψ∗µγ
µνλψν

+2i
(
ψ∗λγµν∂µψν +ψ

∗µγρµ∂
[λψρ]

)

+2iψ∗µγ
µνρλ∂νψρ , (B.16)

δ
(
ψ∗µγ

µνλψ̄∗ν
)
= 4mψ∗µγ

µψλ−4mψ∗µγλψµ−2mψ
∗
µγ
µνλψν

+4iψ∗µ∂
[µψλ]+2iψ∗µγλν∂[µψν]

−2iψ∗µγµν∂
[λψν] . (B.17)

Relying on the above results, we can rewrite the three
terms present in (B.14) in the form

c1

(
ψ∗λγµψµ−

1

2
ψ∗µγ

µνλψν

)
ηλ

= s
[ c1
12m

(
4ψ∗ργµψ̄∗µ−2ψ

∗
µγ
ρψ̄∗µ+ψ∗µγ

µνρψ̄∗ν
)
ηρ

]
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+
ic1
3m

[(
2ψ∗λγµν +

1

2
ψ∗[µγν]λ

)
∂µψν

+
1

2
ψ∗µγµρ∂

[λψρ]+ψ∗µ∂
[µψλ]+

1

2
ψ∗µγ

µνρλ∂νψρ

]
ηλ ,

(B.18)

c2
(
ψ∗µγλψµ−ψ

∗
µγ
µνλψν

)
ηλ

= s
[ c2
3m

(
ψ∗ργµψ̄∗µ−2ψ

∗
µγ
ρψ̄∗µ+ψ∗µγ

µνρψ̄∗ν
)
ηρ

]

+
ic2
3m

[
−
(
ψ∗λγµν +ψ∗[µγν]λ

)
∂µψν

+2ψ∗µγµρ∂
[λψρ]+4ψ∗µ∂

[µψλ]−3ψ∗µγ
µνρλ∂νψρ

]
ηλ ,

(B.19)

c3

(
ψ∗µγµψ

λ−
3

2
ψ∗µγ

µνλψν

)
ηλ

= s
[ c3
12m

(
4ψ∗ργµψ̄∗µ−8ψ

∗
µγ
ρψ̄∗µ+ψ∗µγ

µνρψ̄∗ν
)
ηρ

]

+
ic3
12m

[(
−4ψ∗λγµν+2ψ∗[µγν]λ

)
∂µψν

+14ψ∗µγµρ∂
[λψρ]+4ψ∗µ∂

[µψλ]−12ψ∗µγ
µνρλ∂νψρ

]
ηλ .

(B.20)

By adding the relations (B.18)–(B.20), we observe that
T (c1 , c2 , c3) can be made to vanish by adding some s-
exact terms to the first-order deformation a(int) and by
appropriately redefining the functions N̄ρλσµ.
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